×

Rapid and accurate registration method between intraoperative 2D XA and preoperative 3D CTA images for guidance of percutaneous coronary intervention. (English) Zbl 1423.92169

Summary: In this paper, we propose a rapid rigid registration method for the fusion visualization of intraoperative 2D X-ray angiogram (XA) and preoperative 3D computed tomography angiography (CTA) images. First, we perform the cardiac cycle alignment of a patient’s 2D XA and 3D CTA images obtained from a different apparatus. Subsequently, we perform the initial registration through alignment of the registration space and optimal boundary box. Finally, the two images are registered where the distance between two vascular structures is minimized by using the local distance map, selective distance measure, and optimization of transformation function. To improve the accuracy and robustness of the registration process, the normalized importance value based on the anatomical information of the coronary arteries is utilized. The experimental results showed fast, robust, and accurate registration using 10 cases, each of the left coronary artery (LCA) and right coronary artery (RCA). Our method can be used as a computer-aided technology for percutaneous coronary intervention (PCI). Our method can be applied to the study of other types of vessels.

MSC:

92C55 Biomedical imaging and signal processing
Full Text: DOI

References:

[1] Stewart, J.; Manmathan, G.; Wilkinson, P., Primary prevention of cardiovascular disease: a review of contemporary guidance and literature, JRSM Cardiovascular Disease, 6, 1-9 (2017) · doi:10.1177/2048004016687211
[2] Sopko, G., Preventing cardiac events and restenosis after percutaneous coronary intervention, JAMA, 287, 24, 3259-3261 (2002) · doi:10.1001/jama.287.24.3259
[3] Howard-Alpe, G. M.; de Bono, J.; Hudsmith, L.; Orr, W. P.; Foex, P.; Sear, J. W., Coronary artery stents and non-cardiac surgery, British Journal of Anaesthesia, 98, 5, 560-574 (2007) · doi:10.1093/bja/aem089
[4] Sidney Smith, C.; Dove, J. T.; Jacobs, A. K., ACC/AHA guidelines for percutaneous coronary intervention (revision of the 1993 PTCA guidelines), Circulation, 103, 24, 3019-3041 (2001) · doi:10.1161/01.cir.103.24.3019
[5] Ng, F. C.; Ho, K. H.; Wexler, A., Computer-assisted navigational surgery enhances safety in dental implantology, Annals of the Academy of Medicine Singapore, 34, 5, 383-388 (2005)
[6] Kerrien, E.; Berger, M.-O.; Maurincomme, E.; Launay, L.; Vaillant, R.; Picard, L., Fully automatic 3D/2D subtracted angiography registration, Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI’99 · doi:10.1007/10704282_72
[7] Kerrien, E.; Vaillant, R.; Launay, L.; Berger, M. O.; Maurincomme, E.; Picard, L., Machine precision assessment for 3D/2D digital subtracted angiography images registration, Proceedings of the SPIE Medical Imaging
[8] Hipwell, J. H.; Penney, G. P.; McLaughlin, R. A., Intensity-based 2-D-3-D registration of cerebral angiograms, IEEE Transactions on Medical Imaging, 22, 11, 1417-1426 (2003) · doi:10.1109/tmi.2003.819283
[9] Metz, C. T.; Schaap, M.; Klein, S., Patient specific 4D coronary models from ECG-gated CTA data for intra-operative dynamic alignment of CTA with X-ray images, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI 2009 · doi:10.1007/978-3-642-04268-3_46
[10] Metz, C. T.; Schaap, M.; Klein, S., GPU accelerated alignment of 3-D CTA with 2-D X-ray data for improved guidance in coronary interventions, Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro · doi:10.1109/isbi.2009.5193213
[11] Benseghir, T.; Malandain, G.; Vaillant, R., Iterative closest curve: a framework for curvilinear structure registration application to 2D/3D coronary arteries registration, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention · doi:10.1007/978-3-642-40811-3_23
[12] Myronenko, A.; Song, X., Point set registration: coherent point drift, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 12, 2262-2275 (2010) · doi:10.1109/tpami.2010.46
[13] Kaila, G.; Kitslaar, P.; Tu, S.; Penicka, M.; Dijkstra, J.; Lelieveldt, B., Fusion of CTA and XA data using 3D centerline registration for plaque visualization during coronary intervention, Proceedings of the Medical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling
[14] Kim, Y. R.; Kang, M. S.; Kim, M. H., Feature-based registration of vascular structures for aligning 2D monoplane angiography with 3D pre-op CT angiography using coronary anatomy, International Forum on Medical Imaging in Asia, 1, 1, 4 (2012)
[15] Kim, H. R.; Kang, M. S.; Kim, M. H., Non-rigid registration of vascular structures for aligning 2D X-ray angiography with 3D CT angiography, Proceedings of the International Symposium on Visual Computing
[16] Yang, J., The thin plate spline robust point matching (TPS-RPM) algorithm: a revisit, Pattern Recognition Letters, 32, 7, 910-918 (2011) · doi:10.1016/j.patrec.2011.01.015
[17] Park, T.; Shin, Y.; Lim, S.; Lee, J., Rapid rigid registration method between intra-operative 2D XA and pre-operative 3D CTA images, Journal of Korea Multimedia Society, 16, 12, 1454-1464 (2013) · doi:10.9717/kmms.2013.16.12.1454
[18] Han, D. J.; Doan, N. T.; Shim, H. J., A fast seed detection using local geometrical feature for automatic tracking of coronary arteries in CTA, Computer Methods and Programs in Biomedicine, 117, 2, 179-188 (2014) · doi:10.1016/j.cmpb.2014.07.005
[19] Han, D. J.; Shim, H. J.; Jeon, B. H., Automatic coronary artery segmentation using active search for branches and seemingly disconnected vessel segments from coronary CT angiography, PLoS One, 11, 8 (2016) · doi:10.1371/journal.pone.0156837
[20] Shin, S. Y.; Lee, S.; Noh, K. J.; Yun, I. D.; Lee, K. M., Extraction of coronary vessels in fluoroscopic X-ray sequences using vessel correspondence optimization, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention · doi:10.1007/978-3-319-46726-9_36
[21] Raff, G. L.; Abidov, A.; Achenbach, S., SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography, Journal of Cardiovascular Computed Tomography, 3, 2, 122-136 (2009) · doi:10.1016/j.jcct.2009.01.001
[22] Hong, H.; Lee, J.; Yim, Y., Automatic lung nodule matching on sequential CT images, Computers in Biology and Medicine, 38, 5, 623-634 (2008) · doi:10.1016/j.compbiomed.2008.02.010
[23] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T., Numerical Recipes in C (1992), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0778.65003
[24] Khoo, Y.; Kapoor, A., Non-iterative rigid 2D/3D point-set registration using semidefinite programming, IEEE Transactions on Image Processing, 25, 7, 2956-2970 (2016) · Zbl 1408.94303 · doi:10.1109/tip.2016.2540810
[25] Liu, S.; Liu, P.; Li, Z.; Zhang, Y.; Li, W.; Tang, X., A 3D/2D registration of the coronary arteries based on tree topology consistency matching, Biomedical Signal Processing and Control, 38, 191-199 (2017) · doi:10.1016/j.bspc.2017.06.001
[26] Park, T. W.; Lee, S. C.; Yun, I. D., Nonrigid 2D registration of coronary artery angiograms with periodic displacement field, Proceedings of the Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.