×

Field coupling-induced wave propagation and pattern stability in a two-layer neuronal network under noise. (English) Zbl 1423.92028

Summary: Synapse coupling is critical for information encoding of neurons. The effect of electromagnetic induction in cell becomes distinct when the exchange of charged ions across membrane is frequently triggered by external electric field or synapse current from adjacent neurons. In this paper, Gaussian white noise is imposed on a two-layer network composed of neurons with electromagnetic induction. The gap junction coupling is applied to connect the adjacent neurons and external stimulus with diversity is applied to keep different excitabilities of neurons in each layer. Neurons on the second layer are activated and modulated by using field coupling rather than channel coupling. It is found that the pattern formation on the network is much dependent on the initial setting due to the memory effect based on induction current via memristive synapse. Furthermore, field coupling intensity (\(D_0\)) and noise intensity (\(D_1\)) are changed to detect the development of spiral waves, target waves on the network in presence of noise. It confirms that noise can be helpful for pattern selection and synchronization approach on the two-layer network under field coupling, while field coupling can suppress the self-organization for pattern formation.

MSC:

92C20 Neural biology
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] Ma, J. and Tang, J., Nonlinear Dyn.89, 1569 (2017).
[2] Wang, C. and Ma, J., Int. J. Mod. Phys. B32, 1830003 (2018). · Zbl 1429.37002
[3] Xu, Y.et al., Sci. Rep.7, 43452 (2017).
[4] Lv, M.et al., Nonlinear Dyn.85, 1479 (2016).
[5] Wu, F.et al., Physica A469, 81 (2017).
[6] Ge, M. Y.et al., Nonlinear Dyn.91, 515 (2017).
[7] Batista, C. A.et al., Neural Netw.23, 114 (2010).
[8] Nordlie, E., Gewalti, M. O. and Plesser, H. E., PLoS Comput. Biol.5, e1000456 (2009).
[9] Rossoni, E.et al., PLoS Comput. Biol.4, e1000123 (2008).
[10] Srinivas, K. V.et al., Eur. J. Neurosci.25, 3276 (2007).
[11] Kilpatrick, Z. P. and Bressloff, P. C., Physica D239, 547 (2010). · Zbl 1186.92010
[12] Izhikevich, E. M., Simple model of spiking neurons, IEEE Trans. Neural. Netw.14(6), 1569-1572 (2003).
[13] Sompol, P.et al., Neurosci.153, 120 (2008).
[14] Innocenti, G.et al., Chaos17, 043128 (2007). · Zbl 1163.37336
[15] Nozaki, D. and Yamamoto, Y., Phys. Lett. A243, 281 (1998).
[16] Malashchenko, T., Shilnikov, A. and Cymbalyuk, G., PLoS One6e21782 (2011).
[17] Gu, H. G. and Pan, B. B., Nonlinear Dyn.81, 2107 (2015).
[18] Jia, B.et al., Cogn. Neurodyn.11, 189 (2017).
[19] Robertson, R. M. and Money, T. G., Curr. Opin. Neurobiol.22, 724 (2012).
[20] Bjorness, T. E.et al., J. Neurosci.36, 3709 (2016).
[21] Yang, K. H., Franaszczuk, P. J. and Bergey, G. K., Biol. Cybern.89, 242 (2003). · Zbl 1085.92016
[22] Ren, G.et al., Int. J. Bifurc. Chaos27, 1750187 (2017).
[23] Innocenti, G.et al., Chaos17, 043128 (2007). · Zbl 1163.37336
[24] Hindmarsh, J. L. and Rose, R. M., Proc. Royal Soc. Lond. B221, 87 (1984).
[25] Wang, Y.et al., Int. J. Bifurcat. Chaos27, 1750030 (2017).
[26] Takembo, C. N.et al., Int. J. Mod. Phys. B32, 1850165 (2018).
[27] Bao, B. C., Liu, Z. and Xu, J. P., Electron. Lett.46, 228 (2010).
[28] Muthuswamy, B., Int. J. Bifurc. Chaos20, 1335 (2010). · Zbl 1193.94082
[29] Sabarathinam, S., Volos, C. K. and Thamilmaran, K., Nonlinear Dyn.87, 37 (2017).
[30] Zhang, G.et al., Chaos Solitons Fractals108, 15 (2018).
[31] Guo, S. L.et al., Complexity2017, 5436737 (2017).
[32] Xu, Y.et al., Sci. Rep.7, 43452 (2017).
[33] Wang, G. R.et al., Acta Phys. Sin.54, 1510 (2005) (in Chinese).
[34] Yuan, G. Y.et al., Commun. Theor. Phys.43, 459 (2005).
[35] Zhang, G. Y.et al., Chin. Phys. B17, 4107 (2008).
[36] Ma, J.et al., Int. J. Bifurc. Chaos21, 587 (2011).
[37] Zhao, R., Pan, W. and Xue, Y., Int. J. Mod. Phys. B27, 1350129 (2013).
[38] Chen, X. J.et al., Acta Phys. Sin.61, 210509 (2012) (in Chinese).
[39] Li, G. Z.et al., Acta Phys. Sin.61, 020502 (2012) (in Chinese).
[40] Wu, F.et al., Physica A493, 54 (2018).
[41] Rakshit, S.et al., Sci. Rep.7, 2412 (2017).
[42] Majhi, S., Perc, M. and Ghosh, D., Chaos27, 073109 (2017).
[43] Bera, B. K.et al., Europhys. Lett.118, 10001 (2017).
[44] Dai, Q.et al., Nonlinear Dyn.92, 741 (2018).
[45] Shepelev, I. A.et al., Nonlinear Dyn.90, 2317 (2017).
[46] Slepnev, A. V., Bukh, A. V. and Vadivasova, T. E., Nonlinear Dyn.88, 2983 (2017).
[47] Xu, Y., Jin, W. Y. and Ma, J., Int. J. Mod. Phys. B29, 1550164 (2015). · Zbl 1330.92015
[48] Qin, H. X.et al., Sci. China Phys. Mech. Astro.57, 1918 (2014).
[49] Ma, J.et al., Nonlinear Dyn.73, 73 (2013).
[50] Wang, C. N.et al., Int. J. Mod. Phys. B29, 1550043 (2015).
[51] Hu, B. L., Ma, J. and Tang, J., PLoS One8, e69251 (2013).
[52] Wu, X. Y. and Ma, J., PLoS One8, e55403 (2013).
[53] Qin, H. X.et al., Commun. Nonlinear Sci. Numer. Simul.23, 164 (2015). · Zbl 1352.92035
[54] Yilmaz, E.et al., Physica A444, 538 (2016).
[55] Xu, Y.et al., Neurocomputing207, 398 (2016).
[56] Ma, J.et al., Appl. Math. Comput.307, 321 (2017).
[57] Guo, S.et al., Chaos Solitons Fractals105, 120 (2017).
[58] Xu, Y.et al., Sci. Rep.8, 1349 (2018).
[59] Qin, H.et al., Physica A501, 141 (2018).
[60] Wu, F.et al., Sci. Rep.6, 28 (2016).
[61] Ma, J.et al., Physica A486, 508 (2017).
[62] Gosak, M.et al., Phys. Life Rev.24, 118 (2018).
[63] Sun, X. and Li, G., Nonlinear Dyn.89, 2509 (2017).
[64] Sun, X., Perc, M. and Kurths, J., Chaos27, 053113 (2017).
[65] Guo, D.et al., Phys. Rev. E96, 022415 (2017).
[66] Wang, Y.et al., J. Stat. Mech. Theory Exp.2016, 053208 (2016).
[67] Mei, G.et al., Complexity21, 417 (2016).
[68] Mei, G.et al., IEEE Trans. Cybern.48, 754 (2018).
[69] Ozer, M.et al., Neuroreport21, 338 (2010).
[70] Sun, X.et al., Chaos21, 016110 (2011).
[71] Guo, D., Wang, Q. and Perc, M., Phys. Rev. E85, 061905 (2012).
[72] Perc, M., New J. Phys.7, 252 (2005).
[73] Perc, M., Europhys. Lett.72, 712 (2005).
[74] Guo, D.et al., Europhys. Lett.114, 30001 (2016).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.