×

Fractional order forced convection carbon nanotube nanofluid flow passing over a thin needle. (English) Zbl 1423.82049

Summary: In the fields of fluid dynamics and mechanical engineering, most nanofluids are generally not linear in character, and the fractional order model is the most suitable model for representing such phenomena rather than other traditional approaches. The forced convection fractional order boundary layer flow comprising single-wall carbon nanotubes (SWCNTs) and multiple-wall carbon nanotubes (MWCNTs) with variable wall temperatures passing over a needle was examined. The numerical solutions for the similarity equations were obtained for the integer and fractional values by applying the Adams-type predictor corrector method. A comparison of the SWCNTs and MWCNTs for the classical and fractional schemes was investigated. The classical and fractional order impact of the physical parameters such as skin fraction and Nusselt number are presented physically and numerically. It was observed that the impact of the physical parameters over the momentum and thermal boundary layers in the classical model were limited; however, while utilizing the fractional model, the impact of the parameters varied at different intervals.

MSC:

82D80 Statistical mechanics of nanostructures and nanoparticles

References:

[1] Sparrow, E.M.; Gregg, J.L.; A theory of rotating condensation; J. Heat Transf.: 1959; Volume 81 ,113-120.
[2] Choi, S.U.S.; Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows; FED-231lMD: 1995; Volume 66 ,99-105.
[3] Volder, M.D.; Tawfick, S.; Baughman, R.; Hart, A.; Carbon nanotubes: Present and future commercial applications; Science: 2013; Volume 339 ,535-539.
[4] Terrones, M.; Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes; Annu. Rev. Mater. Res.: 2003; Volume 33 ,491-501.
[5] Ellahi, R.; Hassan, M.; Zeeshan, A.; Study of Natural Convection MHD Nanofluid by Means of Single and Multi-Walled Carbon Nanotubes Suspended in a Salt-Water Solution; IEEE Trans. Nanotechnol.: 2015; Volume 14 ,726-734.
[6] Taza, G.; Waris, K.; Muhammad, S.; Muhammad, A.K.; Ebenezer, B.; MWCNTs/SWCNTs Nanofluid Thin Film Flow over a Nonlinear Extending Disc: OHAM Solution; J. Therm. Sci.: 2018; .
[7] Murshed, S.M.S.; Nieto de Castro, C.A.; Loureno, M.J.V.; Lopes, M.L.M.; Santos, F.J.V.; A review of boiling and convective heat transfer with nanofluids; Renew. Sustain. Energy Rev.: 2011; Volume 15 ,2342-2354.
[8] Murshed, S.M.S.; Leong, K.C.; Yang, C.; Thermophysical and electro kinetic properties of nanofluids a critical review; Appl. Therm. Eng.: 2008; Volume 28 ,2109-2125.
[9] Xue, Q.; Model for thermal conductivity of carbon nanotube-based composites; Phys. B Condens. Matter.: 2005; Volume 368 ,302-307.
[10] Narain, J.P.; Uberoi, M.S.; Combined Forced and Free-Convection Heat Transfer From Vertical Thin Needles in a Uniform Stream; Phys. Fluids: 1972; Volume 15 ,1879-1882. · Zbl 0257.76083
[11] Narain, J.P.; Uberoi, M.S.; Combined Forced and Free- Convection Over Thin Needles; Int. J. Heat Mass Transf.: 1973; Volume 16 ,1505-1512.
[12] Chen, J.L.S.; Mixed Convection Flow About Slender Bodies of Revolution; ASME J. Heat Transf.: 1987; Volume 109 ,1033-1036.
[13] Wang, C.Y.; Mixed convection on a vertical needle with heated tip; Phys. Fluids A: 1990; Volume 2 ,622-625.
[14] Grosan, T.; Pop, I.; Forced convection boundary layer flow past nonisothermal thin needles in nanofluids; J. Heat Transf.: 2011; Volume 133 ,1-4.
[15] Oldham, K.B.; Spanier, J.; ; The Fractional Calculus: New York, NY, USA 1974; . · Zbl 0292.26011
[16] Benson, D.; Wheatcraft, S.W.; Meerschaert, M.M.; The fractional-order governing equation of Lévy motion; Water Resour. Res.: 2000; Volume 36 ,1413-1423.
[17] Benson, D.; Wheatcraft, S.W.; Meerschaert, M.M.; Application of a fractional advection-dispersion equation; Water Resour. Res.: 2000; Volume 36 ,1403-1412.
[18] Caputo, M.; Models of flux in porous media with memory; Water Resour. Res.: 2000; Volume 36 ,693-705.
[19] El Amin, M.F.; Radwan, A.G.; Sun, S.; Analytical solution for fractional derivative gas-flow equation in porous media; Results Phys.: 2017; Volume 7 ,2432-2438.
[20] Atangana, A.; Alqahtani, R.T.; Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation; Adv. Differ. Equ.: 2016; Volume 156 ,1-13. · Zbl 1422.65144
[21] Alkahtani, B.S.T.; Koca, I.; Atangan, A.; A novel approach of variable order derivative: Theory and Methods; J. Nonlinear Sci. Appl.: 2016; Volume 9 ,4867-4876. · Zbl 1350.26009
[22] Agarwal, R.; Hristova, S.; O’Regan, D.; Global Mittag-Leffler Synchronization for Neural Networks Modeled by Impulsive Caputo Fractional Differential Equations with Distributed Delays; Symmetry: 2018; Volume 10 .
[23] Khan, U.; Ellahi, R.; Khan, R.; Mohyud-Din, S.T.; extracting new solitary wave solutions of Benny-Luke equation and Phi-4 equation of fractional order by using (G0/G)-expansion method; Opt. Quant. Electron.: 2017; Volume 49 ,362-376.
[24] Hameed, M.; Ambreen, A.K.; Ellahi, R.; Raza, M.; Study of magnetic and heat transfer on the peristaltic transport of a fractional second grade fluid in a vertical tube; Eng. Sci. Technol. Int. J.: 2015; Volume 18 ,496-502.
[25] Shirvan, K.M.; Ellahi, R.; Sheikholeslami, T.F.; Behzadmehr, A.; Numerical investigation of heat and mass transfer flow under the influence of silicon carbide by means of plasmaenhanced chemical vapor deposition vertical reactor; Neural Comput. Appl.: 2018; Volume 30 ,3721-3731.
[26] Barikbin, Z.; Ellahi, R.; Abbasbandy, S.; The Ritz-Galerkin method for MHD Couette ow of non-Newtonian fluid; Int. J. Ind. Math.: 2014; Volume 6 ,235-243.
[27] Hayat, T.; Saif, R.S.; Ellahi, R.; Muhammad, T.; Ahmad, B.; Numerical study of boundary-layer flow due to a nonlinear curved stretching sheet with convective heat and mass conditions; Results Phys.: 2017; Volume 7 ,2601-2606.
[28] Hayat, T.; Saif, R.S.; Ellahi, R.; Muhammad, T.; Ahmad, B.; Numerical study for Darcy-Forchheimer flow due to a curved stretching surface with Cattaneo-Christov heat flux and homogeneous heterogeneous reactions; Results Phys.: 2017; Volume 7 ,2886-2892.
[29] Javeed, S.; Baleanu, D.; Waheed, A.; Khan, M.S.; Affan, H.; Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations; Mathematics: 2019; Volume 7 .
[30] Srivastava, H.M.; El-Sayed, A.M.A.; Gaafar, F.M.; A Class of Nonlinear Boundary Value Problems for an Arbitrary Fractional-Order Differential Equation with the Riemann-Stieltjes Functional Integral and Infinite-Point Boundary Conditions; Symmetry: 2018; Volume 10 .
[31] Diethelm, K.; Freed, A.D.; The Frac PECE subroutine for the numerical solution of differential equations of fractional order; Forschung und Wissenschaftliches Rechnen: Gottingen, Germany 1999; ,57-71.
[32] Diethelm, K.; Ford, N.J.; Freed, A.D.; Detailed error analysis for a fractional Adams method; Numer. Algorithms: 2004; Volume 36 ,31-52. · Zbl 1055.65098
[33] Saifullah Khan, M.A.; Farooq, M.; A fractional model for the dynamics of TB virus; Chaos Solitons Fractals: 2018; Volume 116 ,63-71. · Zbl 1442.92182
[34] Gul, T.; Khan, M.A.; Khan, A.; Shuaib, M.; Fractional-order three-dimensional thin-film nanofluid flow on an inclined rotating disk; Eur. Phys. J. Plus: 2018; Volume 133 ,500-5011.
[35] Gul, T.; Haleem, I.; Ullah, I.; Khan, M.A.; Bonyah, E.; Khan, I.; Shuaib, M.; The study of the entropy generation in a thin film flow with variable fluid properties past over a stretching sheet; Adv. Mech. Eng.: 2018; Volume 10 ,1-15.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.