×

Wave-current interactions over bottom with appreciable variations in both space and time. (English) Zbl 1423.76057

Summary: In shallow water conditions, current and wave propagation cannot be simulated separately and then superposed linearly. In these conditions, in fact, the fluid dynamics of the wave and current motions and, as a consequence, the responses of the movable bed are significantly different from those expected for a linear superposition of a current with a sinusoidal wave. Thus, wave nonlinearity and the wave-current interaction effects become important factors that need to be considered. A model should be also able to reproduce the fluid dynamics under shallow water conditions over significant slopes and time-bed-level changes. This paper presents a 1DH mathematical formulation of a hydrodynamic model and its numerical solution. The model is able to reproduce all characteristic shallow water phenomena, including: (i) wave-wave and wave-current interaction effects; (ii) important ratios between the current and wave velocities; (iii) significant bed slopes and sudden time-bed-level changes, and (iv) friction stresses at the bottom and at the free surface. Different orders of mathematical approximations and appropriate application examples are also presented.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Full Text: DOI

References:

[1] Do Carmo, J. S. Antunes; Seabra-Santos, F. J.; Barthélemy, E.: Surface waves propagation in shallow water: a finite element model, Int J numer method fluids 16, 447-459 (1993) · Zbl 0825.76448 · doi:10.1002/fld.1650160602
[2] Do Carmo, J. S. Antunes; Seabra-Santos, F. J.: On breaking waves and wave – current interaction in shallow water: a 2DH finite element model, Int J numer method fluids 22, 429-444 (1996) · Zbl 0864.76048 · doi:10.1002/(SICI)1097-0363(19960315)22:5<429::AID-FLD388>3.0.CO;2-8
[3] Do Carmo, J. S. Antunes; Seabra-Santos, F. J.; Amado-Mendes, P.: Sudden bed changes and wave – current interactions in coastal regions, J adv eng softw elsevier sci 33, No. 2, 97-107 (2002) · Zbl 1057.68725 · doi:10.1016/S0965-9978(01)00052-7
[4] Antunes do Carmo JS. Littoral dynamics and coastal protection. A case-study. In: Proceedings of VI SILUSBA – hydraulics and water resources symposium that have Portuguese as the Official Language, Praia, Cabo Verde, November 10 – 13; 2003 [in Portuguese].
[5] Carvalho, R. F.; Do Carmo, J. S. Antunes: Landslides into reservoirs and their impacts on banks, J environ fluid mech Springer Netherlands 7, No. 6, 481-493 (2007)
[6] Gobbi, M. F.; Kirby, J. T.; Wei, G.: A fully nonlinear Boussinesq model for surface waves part 2 extension to \(O(kh)\), J fluid mech 405, 181-210 (2000) · Zbl 0964.76014 · doi:10.1017/S0022112099007247
[7] Liu, P. L. -F.: Model equations for wave propagation from deep to shallow water, Advances in coastal engineering 1, 125-157 (1994) · Zbl 0843.76009
[8] Lynett, P.; Liu, P. L. -F.: A two-layer approach to water wave modeling, Proc roy soc lond A 460, 2637-2669 (2004) · Zbl 1070.76009 · doi:10.1098/rspa.2004.1305
[9] Madsen, P. A.; Sørensen, O. R.: A new form of the Boussinesq equations with improved linear dispersion characteristics part 2 a slowly-varying bathymetry, Coast eng 18, 183-204 (1992)
[10] Mei CC. The applied dynamics of ocean surface waves. John Wiley &amp; Sons. ISBN 0-471-06407-6; 1983 · Zbl 0991.76003
[11] Nwogu, O.: Alternative form of Boussinesq equations for nearshore wave propagation, J waterw port coast ocean eng ASCE 119, No. 6, 618-638 (1993)
[12] Schreck Reis C, Freitas H. Rehabilitation of the Leirosa sand dune. Littoral 2002. The changing coast. Portugal: EUROCOAST. ISBN 972-8558-09-0; 2002.
[13] Schreck Reis C, Freitas H, Antunes do Carmo JS. Leirosa sand dunes: a case study on coastal protection. In: Guedes Soares, Garbatov, Fonseca, editors. Proc IMAM 2005, published in maritime transportation and exploitation of ocean and coastal resources, Taylor &amp; Francis Group, London. ISBN 0 415 39036 2; 2005.
[14] Reis, C. Schreck; Do Carmo, J. S. Antunes; Freitas, H.: Learning with nature a sand dune system case study (Portugal), J coast res 24, No. 6, 1505-1515 (2008)
[15] Seabra-Santos FJ. Contribution à l’étude des ondes de gravité bidimensionnelles en eau peu profonde. PhD thesis, Université Scientifique et Médicale et Institut National Polytechnique de Grenoble, Grenoble – France (in French); 1985.
[16] Seabra-Santos, F. J.; Renouard, D. P.; Temperville, A. M.: Etude théorique et expérimentale des domaines de validité des théories d’évolution des ondes en eau peu profonde, Annal geophys 6, No. 6, 671-680 (1988)
[17] StoraEnso. Dune erosion – sent data. Personal documentation offered by StoraEnso; May 2003.
[18] Wei, G.; Kirby, J. T.; Grilli, S. T.; Subramanya, R.: A fully nonlinear Boussinesq model for surface waves part 1 highly nonlinear unsteady waves, J fluid mech 294, 71-92 (1995) · Zbl 0859.76009 · doi:10.1017/S0022112095002813
[19] Zou, Z. L.; Fang, K. L.: Alternative forms of the higher-order Boussinesq equations: derivations and validations, Coast eng 55, 506-521 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.