×

Stochastic bifurcation of a strongly non-linear vibro-impact system with Coulomb friction under real noise. (English) Zbl 1423.70053

Summary: This manuscript investigated the response of a strongly non-linear vibro-impact (VI) system with Coulomb friction. The impact model is used with classical impact. The excitation is modelled by real noise. First, the VI system is converted into a simplified system without any barrier by non-smooth transformation (symmetric transformation). The stochastic averaging method is adopted to obtain the theoretical stationary probability function of the VI system. Next, the Duffing Van der Pol VI system with Coulomb friction is used to verify the validity of the proposed theoretical method compared with numerical simulations. Moreover, the influence of bandwidth, noise intensity, and friction amplitude are further analyzed in detail on the probability density function (PDF) of distribution of the VI system. The P-bifurcation is studied by a qualitative change of friction amplitude and restitution coefficient on the stationary probability distribution, which indicated that these parameters can arouse the emergence of stochastic P-bifurcation.

MSC:

70K50 Bifurcations and instability for nonlinear problems in mechanics
70F40 Problems involving a system of particles with friction
34F05 Ordinary differential equations and systems with randomness

References:

[1] Ibrahim, R.A.; Modeling Mapping and Application; Vibro-impact Dynamics: Berlin, Germany 2009; . · Zbl 1345.70001
[2] Di Bernardo, M.; Nordmark, A.; Olivar, G.; Discontinity-induced bifurcations of quilibria in piecewise smooth and impacting dynamical systems; Phys. D Nonlinear Phenom.: 2008; Volume 237 ,119-136. · Zbl 1170.34027
[3] Luo, G.W.; Chu, Y.D.; Zhang, Y.L.; Zhang, J.G.; Double Neimark-Sacker bifurcation and torus bifurcation of a class of vibratory systems with symmetrical rigid stops; J. Sound Vib.: 2006; Volume 298 ,154-179. · Zbl 1243.70028
[4] Wagg, D.J.; Bishop, S.R.; Chatter sticking and chaotic impacting motion in a two degree of freedom impact oscillator; Int. J. Bifurc. Chaos: 2001; Volume 11 ,57-71.
[5] Namachchivaya, N.S.; Park, J.H.; Stochastic dynamics of impact oscillators; J. Appl. Mech.: 2005; Volume 72 ,862-870. · Zbl 1111.74572
[6] Park, J.H.; Namachchivaya, N.S.; Noisy impact oscillators; Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition: ; .
[7] Huang, Z.; Liu, Z.; Zhu, W.; Stationary response of multi-degree-of-freedom vibro-impact systems under white noise excitation; J. Sound Vib.: 2004; Volume 275 ,223-240.
[8] Xu, M.; Wang, Y.; Jin, X.; Huang, Z.; Yu, T.; Random response of vibro-impact systems with inelastic contact; Int. J. Non-Linear Mech.: 2013; Volume 52 ,26-31.
[9] Rong, H.; Wang, X.; Xu, W.; Fang, T.; Subharmonic response of a single-degree-of freedom nonlinear 8vibro-impact system to a randomly disordered periodic excitation; J. Sound Vib.: 2009; Volume 327 ,173-182.
[10] Yang, G.; Xu, W.; Jia, W.; He, M.; Random vibrations of Rayleigh vibroimpact oscillator under parametric poisson white noise; Commun. Nonlinear Sci. Numer. Simul.: 2016; Volume 33 ,19-29. · Zbl 1510.82033
[11] Zhu, H.; Stochastic response of vibro-impact Duffing oscillators under external and parametric Gaussian white noises; J. Sound Vib.: 2013; Volume 333 ,945-961.
[12] Zhu, H.; Probabilistic solution of vibro-impact stochastic Duffing systems with a unilateral non-zero offset barrier; Phys. A Stat. Mech. Appl.: 2014; Volume 40 ,335-344. · Zbl 1395.70026
[13] Green, P.L.; Worden, K.; Sims, N.D.; On the identification and modeling of friction in a randomly excited energy harvester; J. Sound Vib.: 2013; Volume 332 ,4696-4708.
[14] Sun, J.Q.; Random vibration analysis of a non-linear system with dry friction damping by the short-time Gaussian cell mapping method; J Sound Vib.: 1995; Volume 180 ,785-795.
[15] Kumar, P.; Narayanan, S.; Gupta, S.; Stochastic bifurcation analysis of a Duffing oscillator with Coulomb friction excited by Poisson White noise; Procedia Eng.: 2016; Volume 144 ,998-1006.
[16] Sun, J.J.; Xu, W.; Lin, Z.F.; Research on the reliability of friction system under combined additive and multiplicative random excitations; Commun. Nonlinear Sci. Numer. Simul.: 2018; Volume 54 ,1-12. · Zbl 1510.70068
[17] Rigatos, G.G.; Siano, P.; Sensorless control of electric motors with Kalman Filters: Applications to robotic and industrial system; Int. J. Adv. Robot. Syst.: 2011; Volume 8 ,71. · Zbl 1241.78034
[18] Rigatos, G.; Siano, P.; Sensorless nonlinear control of induction motors using Unscented Kalman Filtering; Proceedings of the IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society: ; ,4654-4659.
[19] Bryson, A.E.; Ho, Y.-C.; Applied Optimal Control: Optimization, Estimation and Control; London, UK 1935; .
[20] Pappalardo, C.M.; Guida, D.; Use of the Adjoint Method for Controlling the Mechanical Vibrations of Nonlinear Systems; Machines: 2018; Volume 6 . · Zbl 1380.74051
[21] Pappalardo, C.M.; Guida, D.; System algorithm for computing the Modal Parameters of linear mechanical Systems; Machines: 2018; Volume 6 .
[22] Ibrahim, R.A.; ; Vibro-Impact Dynamics Modeling, Mapping and Applications: Berlin, Germany 2009; . · Zbl 1345.70001
[23] Dimentberg, M.F.; Iourtchenko, D.V.; Random vibrations with impacts: A review; Nonlinear Dyn.: 2004; Volume 36 ,229-254. · Zbl 1125.70019
[24] Zhu, W.Q.; Huang, Z.L.; Suzuki, Y.; Response and stability of strongly non-linear oscillators under wide-band random excitation; Int. J. Non-Linear Mech.: 2011; Volume 36 ,1235-1250. · Zbl 1258.70037
[25] Zhu, W.; Cai, G.; Random vibration of viscoelastic system under broad-band excitations; Int. J. Non-Linear Mech.: 2011; Volume 46 ,720-726.
[26] Ling, Q.; Jin, X.; Huang, Z.; Response and stability of SDOF viscoelastic system under wideband noise excitations; J. Franklin Inst.: 2008; Volume 345 ,499-507.
[27] Zhuravlev, V.F.; A method for analyzing vibration-impact systems by means of special function; Mech. Solids: 1976; Volume 11 ,23-27.
[28] Stratonovich, R.L.; ; Topics in the Theory of Random Noise: New York, NY, USA 1963; .
[29] Khasminskii, R.Z.; A limit theorem for the solution of differential equations with random right-band sides; Theory Probab. Appl.: 1966; Volume 11 ,390-405.
[30] Xu, W.; He, Q.; Rong, H.; Fang, T.; Global analysis of stochastic bifurcation in Ueda system; Proceedings of the Fifth International Conference on stochastic Structural Dynamics-SSD03: ; ,509-515.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.