×

Diffusion front capturing schemes for a class of Fokker-Planck equations: application to the relativistic heat equation. (English) Zbl 1423.35365

Summary: We introduce and analyze an explicit conservative finite difference scheme to approximate the solution of initial-boundary value problems for a class of limited diffusion Fokker-Planck equations under homogeneous Neumann boundary conditions. We show stability and positivity preserving property under a Courant-Friedrichs-Lewy parabolic time step restriction. We focus on the relativistic heat equation as a model problem of the mentioned limited diffusion Fokker-Planck equations. We analyze its dynamics and observe the presence of a singular flux and an implicit combination of nonlinear effects that include anisotropic diffusion and hyperbolic transport. We present numerical approximations of the solution of the relativistic heat equation for a set of examples in one and two dimensions including continuous initial data that develops jump discontinuities in finite time. We perform the numerical experiments through a class of explicit high order accurate conservative and stable numerical schemes and a semi-implicit nonlinear Crank-Nicolson type scheme.

MSC:

35Q84 Fokker-Planck equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Andreu, F.; Caselles, V.; Mazon, J. M., A strongly degenerate quasilinear elliptic equation, Nonlinear Anal., 61, 637-669 (2005) · Zbl 1190.35100
[2] Andreu, F.; Caselles, V.; Mazon, J. M., The Cauchy problem for a strongly degenerate quasilinear equation, J. Eur. Math. Soc., 7, 361-393 (2005) · Zbl 1082.35089
[3] Andreu, F.; Caselles, V.; Mazon, J. M.; Moll, S., Finite propagation speed for limited flux diffusion equation, Arch. Ration. Mech. Anal., 182, 269-297 (2006) · Zbl 1142.35455
[4] Andreu, F.; Caselles, V.; Mazon, J. M.; Moll, S., A diffusion equation in transparent media, J. Evol. Equat., 7, 113-143 (2007) · Zbl 1116.35072
[5] Andreu, F.; Caselles, V.; Mazon, J. M., Some regularity results on the relativistic heat equation, J. Differ. Equat., 245, 3639-3663 (2008) · Zbl 1160.35016
[6] Bampi, F.; Morro, A., Relativistic heat equation in casual nonstationary thermodynamics, Phys. Lett., 79A, 2/3, 156-158 (1980)
[7] Barenblatt, G. I., On some unsteady motions of a liquid or a gas in a porous media, Prikl. Mat. MEch., 16, 67-78 (1952) · Zbl 0049.41902
[8] Y. Brenier, Extended Monge-Kantorovich theory, in: Optimal Transportation and Applications: Lectures given at the CIME Summer School held in Martina Franca, Lectures Notes in Mathematics, vol. 1813, Springer-Verlag, 2003, pp. 91-122.; Y. Brenier, Extended Monge-Kantorovich theory, in: Optimal Transportation and Applications: Lectures given at the CIME Summer School held in Martina Franca, Lectures Notes in Mathematics, vol. 1813, Springer-Verlag, 2003, pp. 91-122.
[9] Caselles, V., Convergence of the relativistic heat equation to the heat equation as \(c \to \infty \), Publ. Mat., 51, 121-142 (2007) · Zbl 1140.35466
[10] C. Cattaneo, Sulla conduzione del calore Atti. del Semin. Matem., Unive di Modena, vol. 3, 1948-1949, pp. 83-101.; C. Cattaneo, Sulla conduzione del calore Atti. del Semin. Matem., Unive di Modena, vol. 3, 1948-1949, pp. 83-101. · Zbl 0035.26203
[11] Chertock, A.; Kurganov, A.; Rosenau, P., Formation of discontinuities in flux-saturated degenerate parabolic equations, Nonlinearity, 16, 1875-1898 (2003) · Zbl 1049.35111
[12] Courant, R.; Friedrichs, K.; Lewy, H., Partial differential equations of mathematical physics, Math. Ann., 100, 32-74 (1928) · JFM 54.0486.01
[13] Crandall, M. G.; Ishii, H.; Lions, P. L., Users guide to viscosity solutions of 2-nd order partial differential equations, Bull. Am. Math. Soc., 27, 1, 1-67 (1992) · Zbl 0755.35015
[14] Crank, J.; Nicolson, P., A practical method for numerical evaluation of solution of partial differential equations of the heat conduction type, Proc. Camb. Philos. Soc., 43 (1947) · Zbl 0029.05901
[15] Duderstadt, J. J.; Moses, G. A., Inertial Confinement Fusion (1982), John Wiley and Sons
[16] J. Fourier, Theorie analytique de la chaleur (1822).; J. Fourier, Theorie analytique de la chaleur (1822). · JFM 15.0954.01
[17] Giga, Y., Viscosity solutions with shocks, Commun. Pure Appl. Math., LV, 0431-0480 (2002) · Zbl 1028.35044
[18] Gurtin, A. C.; Pipkin, M. E., A general theory of heat conduction with finite wave speeds, Arch. Ration. Mech. Anal., 31, 113-126 (1968) · Zbl 0164.12901
[19] Jordan, R.; Kinderlehrer, D.; Otto, F., The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29, 1, 1-17 (1998) · Zbl 0915.35120
[20] Joseph, D.; Preziosi, L., Heat waves, Rev. Mod. Phys., 41-73 (1989) · Zbl 1129.80300
[21] Lax, P.; Wendroff, B., Systems of conservation laws, Commun. Pure Appl. Math., 13, 2, 217-237 (1960) · Zbl 0152.44802
[22] Levine, H.; McGee, M. P.; Serna, S., Diffusion and reaction in the cell glycocalyx and the extracellular matrix, J. Math. Biol., 60, 1, 1-26 (2010) · Zbl 1311.92093
[23] Marquina, A., Local piecewise hyperbolic reconstruction of numerical fluxes for nonlinear scalar conservation laws, SIAM J. Sci. Comput., 15, 4, 892-915 (1994) · Zbl 0805.65088
[24] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. Rev. Sec. Phys. Lett., 339, 1, 1-77 (2000) · Zbl 0984.82032
[25] Mihalas, D.; Mihalas, B., Foundations of Radiation Hydrodynamics (1984), Oxford University Press: Oxford University Press Oxford · Zbl 0651.76005
[26] Rosenau, P., Tempered diffusion: a transport process with propagation front and inertial delay, Phys. Rev. A, 46, 7371-7374 (1992)
[27] Rudin, L.; Osher, S.; Fatemi, E., Nonlinear total variation base noise removal algorithms, Physica D, 60, 1-4, 259-268 (1992) · Zbl 0780.49028
[28] Serna, S.; Marquina, A., Power ENO methods: a fifth-order accurate weighted power ENO method, J. Comput. Phys., 194, 2, 632-658 (2004) · Zbl 1044.65071
[29] Serna, S., A class of extended limiters applied to piecewise hyperbolic methods, SIAM J. Sci. Comput., 28, 1, 123-140 (2006) · Zbl 1107.65339
[30] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, 2, J. Comput. Phys., 83, 1, 32-78 (1989) · Zbl 0674.65061
[31] Spiteri, R. J.; Ruuth, S. J., A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM Numer. Anal., 40, 2, 469-491 (2002) · Zbl 1020.65064
[32] Tsallis, C.; Bukman, D. J., Anomalous diffusion in the presence of external forces: exact time-dependent solutions and their thermostatistical basis, Phys. Rev. E, 54, 3, R2197-R2200 (1996)
[33] Young, D. M., Iterative Solution of Large Linear Systems (1971), Academic Press: Academic Press New York · Zbl 0204.48102
[34] Zakari, M.; Jou, D., A generalized Einstein relation for flux-limited diffusion, Physica A, 253, 205-210 (1998)
[35] Zakari, M., A continued-fraction expansion for flux limiters, Physica A, 240, 676-684 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.