×

Acylindrical hyperbolicity and Artin-Tits groups of spherical type. (English) Zbl 1423.20028

Summary: We prove that, for any irreducible Artin-Tits group of spherical type \(G\), the quotient of \(G\) by its center is acylindrically hyperbolic. This is achieved by studying the additional length graph associated to the classical Garside structure on \(G\), and constructing a specific element \(x_G\) of \(G/Z(G)\) whose action on the graph is loxodromic and WPD in the sense of M. Bestvina and K. Fujiwara [Geom. Topol. 6, 69–89 (2002; Zbl 1021.57001)]; following D. Osin [Trans. Am. Math. Soc. 368, No. 2, 851–888 (2016; Zbl 1380.20048)], this implies acylindrical hyperbolicity. Finally, we prove that “generic” elements of \(G\) act loxodromically, where the word “generic” can be understood in either of the two common usages: as a result of a long random walk or as a random element in a large ball in the Cayley graph.

MSC:

20F36 Braid groups; Artin groups
20F65 Geometric group theory
20F67 Hyperbolic groups and nonpositively curved groups
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
57M07 Topological methods in group theory

References:

[1] Bestvina, M., Fujiwara, K.: Bounded cohomology of subgroups of mapping class groups. Geom. Topol. 6, 69-89 (2002) · Zbl 1021.57001 · doi:10.2140/gt.2002.6.69
[2] Bowditch, B.: Tight geodesics in the curve complex. Invent. Math. 171(2), 281-300 (2008) · Zbl 1185.57011 · doi:10.1007/s00222-007-0081-y
[3] Bessis, D.: The dual braid monoid. Ann. Sci. École Norm. Sup. (4) 36, 647-683 (2003) · Zbl 1064.20039 · doi:10.1016/j.ansens.2003.01.001
[4] Bestvina, M., Feighn, M.: A hyperbolic \[Out(F_n)\] Out(Fn)-complex. Groups Geom. Dyn. 4, 31-58 (2010) · Zbl 1190.20017 · doi:10.4171/GGD/74
[5] Birman, J., Ko, K.-H., Lee, S.-J.: A new approach to the word and conjugacy problems in the braid groups. Adv. Math. 139(2), 322-353 (1998) · Zbl 0937.20016 · doi:10.1006/aima.1998.1761
[6] Brieskorn, E., Saito, K.: Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17, 245-271 (1972) · Zbl 0243.20037 · doi:10.1007/BF01406235
[7] Calvez, M., Wiest, B.: Curve graphs and Garside groups. arXiv:1503.02482 (To appear in Geometriae Dedicata) · Zbl 1373.20048
[8] Caruso, S.: On the genericity of pseudo-Anosov braids I: rigid braids. arXiv:1306.3757 · Zbl 1398.20047
[9] Caruso, S., Wiest, B.: On the genericity of pseudo-Anosov braids II: conjugations to rigid braids. arXiv:1309.6137 (To appear in J. Groups Geom. Dyn.) · Zbl 1423.20029
[10] Coxeter, H.S.M.: The complete enumeration of finite groups of the form \[r_i^2=(r_ir_j)^{k_{ij}}=1\] ri2=(rirj)kij=1. J. Lond. Math. Soc. 1-10(1), 21-25 (1935) · JFM 61.0097.05 · doi:10.1112/jlms/s1-10.37.21
[11] Dehornoy, P.: Groupes de Garside. Ann. Sci. École Norm. Sup. (4) 35, 267-306 (2002) · Zbl 1017.20031 · doi:10.1016/S0012-9593(02)01090-X
[12] Dehornoy, P., Digne, F., Godelle, E., Krammer, D., Michel, J.: Foundations of Garside Theory, EMS Tracts in Mathematics, vol. 22. European Mathematical Society (2015) · Zbl 1370.20001
[13] Dehornoy, P., Paris, L.: Gaussian groups and Garside groups, two generalisations of Garside groups. Proc. Lond. Math. Soc. 79(3), 569-604 (1999) · Zbl 1030.20021 · doi:10.1112/S0024611599012071
[14] Deligne, P.: Les immeubles des groupes de tresses généralisés. Invent. Math. 17, 273-302 (1972) · Zbl 0238.20034 · doi:10.1007/BF01406236
[15] Epstein, D.B.A., Cannon, J., Holt, D., Levy, S., Paterson, M., Thurston, W.: Word Processing in Groups. Jones and Bartlett Publishers, Boston (1992) · Zbl 0764.20017
[16] Garside, F.: The braid group and other groups. Q. J. Math. Oxf. II Ser. 20, 235-254 (1969) · Zbl 0194.03303 · doi:10.1093/qmath/20.1.235
[17] Gebhardt, V., González-Meneses, J.: The cyclic sliding operation in Garside groups. Math. Z. 265(1), 85-114 (2010) · Zbl 1253.20034 · doi:10.1007/s00209-009-0502-2
[18] Gebhardt, V., Tawn, S.: On the penetration distance in Garside monoids. arXiv:1403.2669 · Zbl 1380.20038
[19] Kim, S.-H., Koberda, T.: Embedability between right-angled Artin groups. Geom. Topol. 17(1), 493-530 (2013) · Zbl 1278.20049 · doi:10.2140/gt.2013.17.493
[20] Kim, S.-H., Koberda, T.: The geometry of the curve graph of a right-angled Artin group. Int. J. Algebra Comput. 24(2), 121-169 (2014) · Zbl 1342.20042 · doi:10.1142/S021819671450009X
[21] Masur, H., Minsky, Y.: Geometry of the complex of curves I: hyperbolicity. Invent. math. 138, 103-149 (1999) · Zbl 0941.32012 · doi:10.1007/s002220050343
[22] Michel, J.: A note on words in braid monoids. J. Algebra 215, 366-377 (1999) · Zbl 0937.20017 · doi:10.1006/jabr.1998.7723
[23] Osin, D.: Acylindrically hyperbolic groups. Trans. Am. Math. Soc. 368, 851-888 (2016) · Zbl 1380.20048 · doi:10.1090/tran/6343
[24] Sisto, A.: Quasi-convexity of hyperbolically embedded subgroups. arXiv:1310.7753 · Zbl 1380.20044
[25] Sisto, A.: Contracting elements and random walks. arXiv:1112.2666 · Zbl 1407.60064
[26] Wiest, B.: On the genericity of loxodromic actions. arXiv:1406.7041 (To appear in Isr. J. Math.) · Zbl 1381.20039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.