×

Pursuing polynomial bounds on torsion. (English) Zbl 1423.14162

Let \(E\) be an elliptic curve defined over a number field \(F\) with \(j\)-invariant \(j(E)\) belonging to a subfield \(F_0\) of \(F\). Put \(d=[F:\mathbb{Q}]\) and \(d_0=[F_0:\mathbb{Q}]\) (so that \(d_0|d\)) and let \(E(F)_{\mathrm{tor}}\) be the set of all torsion points of \(E\) defined over \(F\). It is well known that \(E(F)_{\mathrm{tor}}\) is finite and a few uniform bounds in terms of polynomials in \(d\) for \(\# E(F)_{\mathrm{tor}}\) (as \(E\) varies through all non-CM elliptic curves defined over \(F\)) have been conjectured (and sometimes proved) in recent years. The authors generalize a bound of K. Arai [J. Théor. Nombres Bordx. 20, No. 1, 23–43 (2008; Zbl 1211.11066)] on the image of the Galois representation of torsion points (using group theoretic arguments on \(p\)-adic analytic groups) and use a recent result of A. Lozano-Robledo [Res. Number Theory 4, Paper No. 6, 39 p. (2018; Zbl 1439.11137)] on ramification of fields generated by torsion points, to prove a bound of type \[ \# E(F)_{\mathrm{tor}} \leqslant C(\varepsilon, F_0)d^{\frac{5}{2}+\varepsilon} \] for all \(\varepsilon >0\), for all non CM elliptic curves defined over \(F\) and for some classes of fields \(F_0\), i.e. \(F_0\) imaginary quadratic of class number larger than 1, or (under GRH) \(F_0\) any field not containing the Hilbert class field of an imaginary quadratic field, or for fields \(F_0\) for which there exists a prime \(\ell_0(d_0)\) such that for any prime \(\ell>\ell_0(d_0)\) the modular curve \(X_0(\ell)\) has no noncuspidal non CM point of degree \(d_0\).

MSC:

14G05 Rational points
11G05 Elliptic curves over global fields
14K02 Isogeny

References:

[1] Abramovich, D., A linear lower bound on the gonality of modular curves, 1005-1011, (1996) · Zbl 0878.14019
[2] Arai, K., On uniform lower bound of the Galois images associated to elliptic curves, Journal de Théorie des Nombres de Bordeaux, 20, 23-43, (2008) · Zbl 1211.11066 · doi:10.5802/jtnb.614
[3] Breuer, F., Torsion bounds for elliptic curves and Drinfeld modules, Journal of Number Theory, 130, 1241-1250, (2010) · Zbl 1227.11072 · doi:10.1016/j.jnt.2009.11.009
[4] Clark, P. L., On the Hasse principle for Shimura curves, Israel Journal of Mathematics, 171, 349-365, (2009) · Zbl 1189.11034 · doi:10.1007/s11856-009-0053-6
[5] P. L. Clark, M. Milosevic and P. Pollack, Typically bounding torsion, Journal of Number Theory, to appear. · Zbl 1454.11114
[6] Clark, P. L.; Pollack, P., The truth about torsion in the CM case, Comptes Rendus Mathématique. Académie des Sciences. Paris, 353, 683-688, (2015) · Zbl 1333.11051 · doi:10.1016/j.crma.2015.05.004
[7] Clark, P. L.; Pollack, P., The truth about torsion in the CM case, II, Quarterly Journal of Mathematics, 68, 1313-1333, (2017) · Zbl 1405.11074 · doi:10.1093/qmath/hax024
[8] Cadoret, A.; Tamagawa, A., A uniform open image theorem for ℓ-adic representations, I, Duke Mathematical Journal, 161, 2605-2634, (2012) · Zbl 1305.14016 · doi:10.1215/00127094-1812954
[9] Cadoret, A.; Tamagawa, A., A uniform open image theorem for ℓ-adic representations, II, Duke Mathematical Journal, 162, 2301-2344, (2013) · Zbl 1279.14056 · doi:10.1215/00127094-2323013
[10] M. Derickx, Torsion points on elliptic curves over number fields of small degree, PhD thesis, Leiden, 2016.
[11] Faltings, G., The general case of S. lang’s conjecture, 175-182, (1994), San Diego, CA · Zbl 0823.14009 · doi:10.1016/B978-0-12-197270-7.50012-7
[12] Fried, M.; Jarden, M., Field arithmetic, (2008), Berlin · Zbl 1145.12001
[13] Frey, G., Curves with infinitely many points of fixed degree, Israel Journal of Mathematics, 85, 79-83, (1994) · Zbl 0808.14022 · doi:10.1007/BF02758637
[14] Hindry, M.; Ratazzi, N., Torsion pour LES variétés abéliennes de type I et II, Algebra & Number Theory, 10, 1845-1891, (2016) · Zbl 1410.11060 · doi:10.2140/ant.2016.10.1845
[15] Hindry, M.; Silverman, J., Sur le nombre de points de torsion rationnels sur une courbe elliptique, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique, 329, 97-100, (1999) · Zbl 0993.11028
[16] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 2008. · Zbl 1159.11001
[17] Lazard, M., Groupes analytiques p-adiques, Institut des Hautes études Scientifiques. Publications Mathématiques, 26, 389-603, (1965) · Zbl 0139.02302
[18] Lozano-Robledo, Uniform boundedness in terms of ramification, Research in Number Theory, 4, 39, (2018) · Zbl 1439.11137 · doi:10.1007/s40993-018-0095-0
[19] Larson, E.; Vaintrob, D., Determinants of subquotients of Galois representations associated with abelian varieties, Journal of the Institute of Mathematics of Jussieu, 13, 517-559, (2014) · Zbl 1300.11064 · doi:10.1017/S1474748013000182
[20] Mazur, B., Rational isogenies of prime degree, Inventiones Mathematicae, 44, 129-162, (1978) · Zbl 0386.14009 · doi:10.1007/BF01390348
[21] D. Masser, Lettre à Daniel Bertrand du 10 novembre 1986.
[22] Merel, L., Bornes pour la torsion des courbes elliptiques sur LES corps de nombres, Inventiones Mathematicae, 124, 437-449, (1996) · Zbl 0936.11037 · doi:10.1007/s002220050059
[23] Momose, F., Isogenies of prime degree over number fields, Compositio Mathematica, 97, 329-348, (1995) · Zbl 1044.11582
[24] Nikolov, N.; Segal, D., On finitely generated profinite groups. I. strong completeness and uniform bounds, Annals of Mathematics, 165, 171-238, (2007) · Zbl 1126.20018 · doi:10.4007/annals.2007.165.171
[25] Parent, P., Bornes effectives pour la torsion des courbes elliptiques sur LES corps de nombres, Journal für die Reine und Angewandte Mathematik, 506, 85-116, (1999) · Zbl 0919.11040 · doi:10.1515/crll.1999.506.85
[26] J. Rouse, What are the strongest conjectured uniform versions of Serre’s Open Image Theorem?, https://doi.org/mathoverflow.net/q/203837
[27] Serre, J.-P., Lectures on the Mordell-Weil theorem, (1997), Braunschweig · Zbl 0863.14013
[28] Serre, J.-P., Abelian ℓ-adic representations and elliptic curves, (1968), New York-Amsterdam · Zbl 0186.25701
[29] Serre, J.-P., Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Inventiones Mathematicae, 15, 259-331, (1972) · Zbl 0235.14012 · doi:10.1007/BF01405086
[30] Silverberg, A., Torsion points on abelian varieties of CM-type, Compositio Mathematica, 68, 241-249, (1988) · Zbl 0683.14002
[31] Silverberg, A., Points of finite order on abelian varieties, 175-193, (1992), Providence, RI · Zbl 0787.14028
[32] Silverman, J., Advanced topics in the arithmetic of elliptic curves, (1994), Berlin · Zbl 0911.14015
[33] Silverberg, A.; Zarhin, Yu. G., Semistable reduction and torsion subgroups of abelian varieties, Université de Grenoble. Annales de l’Institut Fourier, 45, 403-420, (1995) · Zbl 0818.14017 · doi:10.5802/aif.1459
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.