×

Permanence of the periodic predator-prey-mutualist system. (English) Zbl 1422.92135

Summary: In this paper, we study the permanence and the periodic solution of the periodic predator-prey-mutualist system. It is well known that mutualist species can reduce the capture rate of the predator species to the prey species. By further developing the analysis technique of Teng, a set of conditions which ensure the permanence of the system are obtained. In addition, sufficient conditions are derived for the existence of positive periodic solutions to the system. An example together with its numerical simulation shows the feasibility of the main results.

MSC:

92D25 Population dynamics (general)
34C25 Periodic solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34D23 Global stability of solutions to ordinary differential equations

References:

[1] Berryman, AA: The origins and evolution of predator-prey theory. Ecology 73(5), 1530-1535 (1992) · doi:10.2307/1940005
[2] Chen, LJ, Chen, FD, Chen, LJ: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Anal., Real World Appl. 11(1), 246-252 (2010) · Zbl 1186.34062 · doi:10.1016/j.nonrwa.2008.10.056
[3] Chen, FD, Wu, CQ, Chen, WL: Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference. Appl. Math. Comput. 219(15), 7945-7953 (2013) · Zbl 1293.34062 · doi:10.1016/j.amc.2013.02.026
[4] Chen, LJ, Chen, FD, Wang, YQ: Influence of predator mutual interference and prey refuge on Lotka-Volterra predator-prey dynamics. Commun. Nonlinear Sci. Numer. Simul. 18(11), 3174-3180 (2013) · Zbl 1329.92102 · doi:10.1016/j.cnsns.2013.04.004
[5] Yu, SB, Wu, HH, Chen, JB: Multiple periodic solutions of delayed predator-prey systems with type IV functional responses on time scales. Discrete Dyn. Nat. Soc. 2012, Article ID 271672 (2012) · Zbl 1244.34116
[6] Chen, FD, Zhang, HY: Global asymptotical stability of the positive equilibrium of Lotka-Volterra prey-predator model incorporating a constant number of prey refuge. Nonlinear Anal., Real World Appl. 13(6), 2790-2793 (2012) · Zbl 1254.92073 · doi:10.1016/j.nonrwa.2012.04.006
[7] Chen, LJ, Xu, JY, Li, Z: Permanence and global attractivity of a delayed discrete predator-prey system with general Holling-type functional response and feedback controls. Discrete Dyn. Nat. Soc. 2008, Article ID 629620 (2008) · Zbl 1161.39017
[8] Das, K, Shiva Reddy, K, Srinivas, MN, Gazi, NH: Chaotic dynamics of a three species prey-predator competition model with noise in ecology. Appl. Math. Comput. 231, 117-133 (2014) · Zbl 1410.92095 · doi:10.1016/j.amc.2013.12.182
[9] Wu, RX, Li, L: Permanence and global attracticity of the discrete predator-prey system with Hassell-Varley-Holling III type functional response. Discrete Dyn. Nat. Soc. 2013, Article ID 393729 (2013) · Zbl 1268.39019
[10] Chen, LJ, Chen, FD: Global stability and bifurcation of a ratio-dependent predator-prey model with prey refuge. Acta Math. Sin. Chin. Ser. 57(2), 301-310 (2014) (in Chinese) · Zbl 1313.34134
[11] Bently, BL: Extrafloral nectarines and protection by pugnacious bodyguards. Annu. Rev. Ecol. Syst. 8, 407-427 (1977) · doi:10.1146/annurev.es.08.110177.002203
[12] Addicott, JF: A multispecies aphid-ant association: density dependence and species-specific effects. Can. J. Zool. 57(3), 558-569 (1979) · doi:10.1139/z79-066
[13] Way, MJ: Mutualism between ants and honeydew-producing homoptera. Annu. Rev. Entomol. 8(1), 307-344 (1963) · doi:10.1146/annurev.en.08.010163.001515
[14] Murray, JD: Mathematical Biology. Springer, Berlin (1988)
[15] Rai, B, Krawcewicz, W: Hopf bifurcation in symmetric configuration of predator-prey-mutualist systems. Nonlinear Anal., Real World Appl. 71(9), 4279-4296 (2009) · Zbl 1165.92037 · doi:10.1016/j.na.2009.02.127
[16] Yang, LY, Xie, XX, Wu, CQ: Periodic solution of a periodic predator-prey-mutualist system. Commun. Math. Biol. Neurosci. 2015, Article ID 7 (2015) · doi:10.1016/j.jneumeth.2014.10.009
[17] Chen, FD, Shi, CL: Global attractivity in an almost periodic multi-species nonlinear ecological model. Appl. Math. Comput. 180(1), 376-392 (2006) · Zbl 1099.92069 · doi:10.1016/j.amc.2005.12.024
[18] Yu, SB, Chen, FD: Almost periodic solution of a modified Leslie-Gower predator-prey model with Holling-type II schemes and mutual interference. Int. J. Biomath. 3, 81-95 (2014)
[19] Shi, CL, Li, Z, Chen, FD: Extinction in a nonautonomous Lotka-Volterra competitive system with infinite delay and feedback controls. Nonlinear Anal., Real World Appl. 13(5), 2214-2226 (2012) · Zbl 1268.34171 · doi:10.1016/j.nonrwa.2012.01.016
[20] Teng, Z: Uniform persistence of the periodic predator-prey Lotka-Volterra system. Appl. Anal. 72(3), 339-352 (1999) · Zbl 1031.34045
[21] Teng, Z, Chen, L: The positive periodic solutions of periodic Kolmogorov type systems with delays. Acta Math. Appl. Sin. 22, 446-456 (1999) (in Chinese) · Zbl 0976.34063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.