×

Extreme run-up events on a vertical wall due to nonlinear evolution of incident wave groups. (English) Zbl 1422.76025

Summary: Nonlinear evolution of long-crested wave groups can lead to extreme interactions with coastal and marine structures. In the present study the role of nonlinear evolution in the formation of extreme run-up events on a vertical wall is investigated. To this end, the fundamental problem of interaction between non-breaking water waves and a vertical wall over constant water depth is considered. In order to simulate nonlinear wave-wall interactions, the high-order spectral method is applied to a computational domain which aims to represent a two-dimensional wave flume. Wave generation is simulated at the flume entrance by means of the additional potential concept. Through this concept, the implementation of a numerical wavemaker is applicable. In addition to computational efficiency, the adopted numerical approach enables one to consider the evolution of nonlinear waves while preserving full dispersivity. Utilizing these properties, the influence of the nonlinear wave evolution on the wave run-up can be examined for a wide range of water depths. In shallow water, it is known that nonlinear evolution of incident waves may result in extreme run-up events due to the formation of an undular bore. The present study reveals the influence of the nonlinear evolution on the wave run-up in deep-water conditions. The results suggest that extreme run-up events in deep water may occur as a result of the disintegration of incident wave groups into envelope solitons.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography

Software:

Matlab
Full Text: DOI

References:

[1] Agnon, Y.; Bingham, H. B., A non-periodic spectral method with application to nonlinear water waves, Eur. J. Mech. (B/Fluids), 18, 527-534, (1999) · Zbl 0938.76073 · doi:10.1016/S0997-7546(99)80047-8
[2] Bai, W.; Taylor, R. E., Numerical simulation of fully nonlinear regular and focused wave diffraction around a vertical cylinder using domain decomposition, Appl. Ocean Res., 29, 55-71, (2007) · doi:10.1016/j.apor.2007.05.005
[3] Benjamin, T. B.; Feir, J., The disintegration of wave trains on deep water. Part 1. Theory, J. Fluid Mech., 27, 417-430, (1967) · Zbl 0144.47101 · doi:10.1017/S002211206700045X
[4] Bonnefoy, F.; Le Touzé, D.; Ferrant, P., A fully-spectral 3D time-domain model for second-order simulation of wavetank experiments. Part A: formulation, implementation and numerical properties, Appl. Ocean Res., 28, 33-43, (2006) · doi:10.1016/j.apor.2006.05.004
[5] Byatt-Smith, J. G., An integral equation for unsteady surface waves and a comment on the Boussinesq equation, J. Fluid Mech., 49, 625-633, (1971) · Zbl 0229.76011 · doi:10.1017/S0022112071002295
[6] Carbone, F.; Dutykh, D.; Dudley, J. M.; Dias, F., Extreme wave runup on a vertical cliff, Geophys. Res. Lett., 40, 3138-3143, (2013) · doi:10.1002/grl.50637
[7] Chambarel, J.; Kharif, C.; Touboul, J., Head-on collision of two solitary waves and residual falling jet formation, Nonlinear Process. Geophys., 16, 111-122, (2009) · doi:10.5194/npg-16-111-2009
[8] Chen, Y.; Kharif, C.; Yang, J.; Hsu, H.; Touboul, J.; Chambarel, J., An experimental study of steep solitary wave reflection at a vertical wall, Eur. J. Mech. (B/Fluids), 49, 20-28, (2015) · doi:10.1016/j.euromechflu.2014.07.003
[9] Clamond, D.; Francius, M.; Grue, J.; Kharif, C., Long time interaction of envelope solitons and freak wave formations, Eur. J. Mech. (B/Fluids), 25, 536-553, (2006) · Zbl 1331.76027 · doi:10.1016/j.euromechflu.2006.02.007
[10] Cooker, M.; Weidman, P.; Bale, D., Reflection of a high-amplitude solitary wave at a vertical wall, J. Fluid Mech., 342, 141-158, (1997) · Zbl 0911.76012 · doi:10.1017/S002211209700551X
[11] Craig, W.; Guyenne, P.; Hammack, J.; Henderson, D.; Sulem, C., Solitary water wave interactions, Phys. Fluids, 18, (2006) · Zbl 1185.76463 · doi:10.1063/1.2205916
[12] Dean, R. & Dalrymple, R.1991Water Wave Mechanics for Engineers and Scientists. , vol. 2. World Scientific.
[13] Dommermuth, D. G.; Yue, D. K., A high-order spectral method for the study of nonlinear gravity waves, J. Fluid Mech., 184, 267-288, (1987) · Zbl 0638.76016 · doi:10.1017/S002211208700288X
[14] Dommermuth, D. G.; Yue, D. K.; Lin, W.; Rapp, R.; Chan, E.; Melville, W., Deep-water plunging breakers: a comparison between potential theory and experiments, J. Fluid Mech., 189, 423-442, (1988) · Zbl 0642.76020 · doi:10.1017/S0022112088001089
[15] Dysthe, K.; Krogstad, H. E.; Müller, P., Oceanic rogue waves, Annu. Rev. Fluid Mech., 40, 287-310, (2008) · Zbl 1136.76009 · doi:10.1146/annurev.fluid.40.111406.102203
[16] El, G.; Grimshaw, R. H.; Smyth, N. F., Unsteady undular bores in fully nonlinear shallow-water theory, Phys. Fluids, 18, (2006) · Zbl 1185.76454 · doi:10.1063/1.2175152
[17] Favre, H., Etude Théorique et Expérimentale des Ondes de Translation dans les Canaux Découverts, (1935), Dunod
[18] Ji, X.; Liu, S.; Li, J.; Jia, W., Experimental investigation of the interaction of multidirectional irregular waves with a large cylinder, Ocean Engng, 93, 64-73, (2015) · doi:10.1016/j.oceaneng.2014.10.004
[19] Kharif, C.; Pelinovsky, E., Physical mechanisms of the rogue wave phenomenon, Eur. J. Mech. (B/Fluids), 22, 603-634, (2003) · Zbl 1058.76017 · doi:10.1016/j.euromechflu.2003.09.002
[20] Li, J.; Wang, Z.; Liu, S., Experimental study of interactions between multi-directional focused wave and vertical circular cylinder, part I: wave run-up, Coast. Engng, 64, 151-160, (2012) · doi:10.1016/j.coastaleng.2012.02.003
[21] Li, J.; Wang, Z.; Liu, S., Experimental study of interactions between multi-directional focused wave and vertical circular cylinder, part II: wave force, Coast. Engng, 83, 233-242, (2014) · doi:10.1016/j.coastaleng.2013.06.004
[22] Madsen, P. A.; Fuhrman, D. R.; Schäffer, H. A., On the solitary wave paradigm for tsunamis, J. Geophys. Res., 113, (2008) · doi:10.1029/2008JC004932
[23] Maxworthy, T., Experiments on collisions between solitary waves, J. Fluid Mech., 76, 177-186, (1976) · doi:10.1017/S0022112076003194
[24] Mirchina, N.; Pelinovsky, E., Increase in the amplitude of a long wave near a vertical wall, Izv. Atmos. Ocean. Phys., 20, 252-253, (1984)
[25] Nikolkina, I.; Didenkulova, I., Rogue waves in 2006-2010, Nat. Hazards Earth Syst. Sci., 11, 2913-2924, (2011) · doi:10.5194/nhess-11-2913-2011
[26] O’Brien, L.; Dudley, J. M.; Dias, F., Extreme wave events in Ireland: 14,680 BP-2012, Nat. Hazards Earth Syst. Sci., 13, 625-648, (2013) · doi:10.5194/nhess-13-625-2013
[27] Onorato, M.; Residori, S.; Bortolozzo, U.; Montina, A.; Arecchi, F., Rogue waves and their generating mechanisms in different physical contexts, Phys. Rep., 528, 47-89, (2013) · doi:10.1016/j.physrep.2013.03.001
[28] Pelinovsky, E.; Kharif, C.; Talipova, T., Large-amplitude long wave interaction with a vertical wall, Eur. J. Mech. (B/Fluids), 27, 409-418, (2008) · Zbl 1143.76016 · doi:10.1016/j.euromechflu.2007.08.003
[29] Pelinovsky, E. N.; Shurgalina, E. G., Anomalous wave amplification near a vertical barrier, Fund. Appl. Hydrophys., 4, 10, 28-37, (2010)
[30] Pelinovsky, E. N.; Shurgalina, E. G.; Rodin, A. A., Criteria for the transition from a breaking bore to an undular bore, Izv. Atmos. Ocean. Phys., 51, 530-533, (2015) · doi:10.1134/S0001433815050096
[31] Peregrine, D., Calculations of the development of an undular bore, J. Fluid Mech., 25, 321-330, (1966) · doi:10.1017/S0022112066001678
[32] Power, H.; Chwang, A. T., On reflection of a planar solitary wave at a vertical wall, Wave Motion, 6, 183-195, (1984) · Zbl 0545.76021 · doi:10.1016/0165-2125(84)90014-3
[33] Soares-Frazao, S.; Guinot, V., A second-order semi-implicit hybrid scheme for one-dimensional Boussinesq-type waves in rectangular channels, Intl J. Numer. Meth. Fluids, 58, 237-261, (2008) · Zbl 1391.76578 · doi:10.1002/fld.1679
[34] Soares Frazao, S.; Zech, Y., Undular bores and secondary waves – experiments and hybrid finite-volume modelling, J. Hydraul. Res., 40, 33-43, (2002) · doi:10.1080/00221680209499871
[35] Stoker, J., Water Waves: The Mathematical Theory with Applications, (1957), Interscience · Zbl 0078.40805
[36] Su, C.; Mirie, R. M., On head-on collisions between two solitary waves, J. Fluid Mech., 98, 509-525, (1980) · Zbl 0434.76021 · doi:10.1017/S0022112080000262
[37] Su, M. Y., Evolution of groups of gravity waves with moderate to high steepness, Phys. Fluids, 25, 2167-2174, (1982) · doi:10.1063/1.863708
[38] Tissier, M.; Bonneton, P.; Marche, F.; Chazel, F.; Lannes, D., Nearshore dynamics of tsunami-like undular bores using a fully nonlinear Boussinesq model, J. Coast. Res., 64, 603-607, (2011) · Zbl 1391.76066
[39] Trefethen, L. N., Spectral Methods in MATLAB, (2000), SIAM · Zbl 0953.68643 · doi:10.1137/1.9780898719598
[40] Viotti, C.; Carbone, F.; Dias, F., Conditions for extreme wave runup on a vertical barrier by nonlinear dispersion, J. Fluid Mech., 748, 768-788, (2014) · Zbl 1416.76028 · doi:10.1017/jfm.2014.217
[41] West, B. J.; Brueckner, K. A.; Janda, R. S.; Milder, D. M.; Milton, R. L., A new numerical method for surface hydrodynamics, J. Geophys. Res., 92, 11803-11824, (1987) · doi:10.1029/JC092iC11p11803
[42] Yuen, H. C.; Lake, B. M., Nonlinear deep water waves: theory and experiment, Phys. Fluids, 18, 956-960, (1975) · Zbl 0326.76018 · doi:10.1063/1.861268
[43] Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 190-194, (1968) · doi:10.1007/BF00913182
[44] Zakharov, V.; Shabat, A., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, 34, 62-69, (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.