×

A second-order Fourier pseudospectral method for the generalized regularized long wave equation. (English) Zbl 1422.65282

Summary: We present a second-order in time linearized semi-implicit Fourier pseudospectral scheme for the generalized regularized long wave equation. Based on the consistency analysis, the nonlinear stability and the convergence of the scheme are discussed, along with the a priori assumption and an aliasing error control estimate. The numerical examples demonstrate the features of the proposed scheme, including the convergence order, conservative properties, and the evolution of the unstable wave.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Peregrine, DH: Long waves on beach. J. Fluid Mech. 27(4), 815-827 (1967) · Zbl 0163.21105 · doi:10.1017/S0022112067002605
[2] Benjamin, TB, Bona, JL, Mahony, JJ: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. A 272(1220), 47-78 (1972) · Zbl 0229.35013 · doi:10.1098/rsta.1972.0032
[3] Miller, JR, Weinstein, MI: Asymptotic stability of solitary waves for the regularized long-wave equation. Commun. Pure Appl. Math. 49(4), 399-441 (1996) · Zbl 0854.35102 · doi:10.1002/(SICI)1097-0312(199604)49:4<399::AID-CPA4>3.0.CO;2-7
[4] Wazwaz, AM: Analytic study on nonlinear variants of the RLW and the PHI-four equations. Commun. Nonlinear Sci. Numer. Simul. 12(3), 314-327 (2007) · Zbl 1109.35099 · doi:10.1016/j.cnsns.2005.03.001
[5] Soliman, AA: Numerical simulation of the generalized regularized long wave equation by He’s variational iteration method. Math. Comput. Simul. 70(2), 119-124 (2005) · Zbl 1152.65467 · doi:10.1016/j.matcom.2005.06.002
[6] Zhang, L: A finite difference scheme for generalized regularized long-wave equation. Appl. Math. Comput. 168(2), 962-972 (2005) · Zbl 1080.65079 · doi:10.1016/j.amc.2004.09.027
[7] Chang, Q, Wang, G, Guo, B: Conservative scheme for a model of nonlinear dispersive waves and its solitary waves induced by boundary motion. J. Comput. Phys. 93(2), 360-375 (1991) · Zbl 0739.76037 · doi:10.1016/0021-9991(91)90189-R
[8] Zheng, K, Hu, J: High-order conservative Crank-Nicolson scheme for regularized long wave equation. Adv. Differ. Equ. 2013, Article ID 287 (2013) · Zbl 1444.65051 · doi:10.1186/1687-1847-2013-287
[9] Hu, J, Zheng, K, Zheng, M: Numerical simulation and convergence analysis of a high-order conservative difference scheme for SRLW equation. Appl. Math. Model. 38(23), 5573-5581 (2014) · Zbl 1429.65185 · doi:10.1016/j.apm.2014.04.062
[10] Akbari, R, Mokhtari, R: A new compact finite difference method for solving the generalized long wave equation. Numer. Funct. Anal. Optim. 35(2), 133-152 (2014) · Zbl 1290.65070 · doi:10.1080/01630563.2013.830128
[11] Sloan, DM: Fourier pseudospectral solution of the regularized long wave equation. J. Comput. Appl. Math. 36(2), 159-179 (1991) · Zbl 0732.65096 · doi:10.1016/0377-0427(91)90024-E
[12] Djidjeli, K, Price, WG, Twizell, EH, Cao, Q: A linearized implicit pseudo-spectral method for some model equations: the regularized long wave equations. Commun. Numer. Methods Eng. 19(11), 847-863 (2003) · Zbl 1035.65110 · doi:10.1002/cnm.635
[13] Roshan, T: A Petrov-Galerkin method for solving the generalized regularized long wave (GRLW) equation. Comput. Math. Appl. 63(5), 943-956 (2012) · Zbl 1247.65129 · doi:10.1016/j.camwa.2011.11.059
[14] Achouri, T, Ayadi, M, Omrani, K: A fully Galerkin method for the damped generalized regularized long-wave (DGRLW) equation. Numer. Methods Partial Differ. Equ. 25(3), 668-684 (2009) · Zbl 1167.65056 · doi:10.1002/num.20367
[15] Achouri, T, Omrani, K: Numerical solutions for the damped generalized regularized long-wave equation with a variable coefficient by Adomian decomposition method. Commun. Nonlinear Sci. Numer. Simul. 14(5), 2025-2033 (2009) · Zbl 1221.65270 · doi:10.1016/j.cnsns.2008.07.011
[16] Kaya, D: A numerical simulation of solitary-wave solutions of the generalized regularized long-wave equation. Appl. Math. Comput. 149(3), 833-841 (2004) · Zbl 1038.65101 · doi:10.1016/S0096-3003(03)00189-9
[17] Mokhtari, R, Mohammadi, M: Numerical solution of GRLW equation using Sinc-collocation method. Comput. Phys. Commun. 181(7), 1266-1274 (2010) · Zbl 1219.65113 · doi:10.1016/j.cpc.2010.03.015
[18] Mohammadi, M, Mokhtari, R: Solving the generalized regularized long wave equation on the basis of a reproducing kernel space. J. Comput. Appl. Math. 235(14), 4003-4014 (2011) · Zbl 1220.65143 · doi:10.1016/j.cam.2011.02.012
[19] Souganidis, PE, Strauss, WA: Instability of a class of dispersive solitary waves. Proc. R. Soc. Edinb. A 114, 195-212 (1990) · Zbl 0713.35108 · doi:10.1017/S0308210500024380
[20] Bona, JL, McKinney, WR, Restrepo, JM: Stable and unstable solitary-wave solutions of the generalized regularized long-wave equation. J. Nonlinear Sci. 10(6), 603-638 (2000) · Zbl 0972.35131 · doi:10.1007/s003320010003
[21] Durán, A, López-Marcos, MA: Numerical behaviour of stable and unstable solitary waves. Appl. Numer. Math. 42(1), 95-116 (2002) · Zbl 1002.65134 · doi:10.1016/S0168-9274(01)00144-1
[22] Boyd, J: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York (2001) · Zbl 0994.65128
[23] Hesthaven, J, Gottlieb, S, Gottlieb, D: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007) · Zbl 1111.65093 · doi:10.1017/CBO9780511618352
[24] Maday, Y, Quarteroni, A: Spectral and pseudospectral approximation to Navier-Stokes equations. SIAM J. Numer. Anal. 19(4), 761-780 (1982) · Zbl 0503.76035 · doi:10.1137/0719053
[25] Tadmor, E: Convergence of spectral methods to nonlinear conservation laws. SIAM J. Numer. Anal. 26(1), 30-44 (1989) · Zbl 0667.65079 · doi:10.1137/0726003
[26] Tadmor, E: The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal. 23(1), 1-10 (1986) · Zbl 0613.65017 · doi:10.1137/0723001
[27] Weinan, E: Convergence of Fourier methods for Navier-Stokes equations. SIAM J. Numer. Anal. 30(3), 650-674 (1993) · Zbl 0776.76021 · doi:10.1137/0730032
[28] Guo, BY, Zou, J: Fourier spectral projection method and nonlinear convergence analysis for Navier-Stokes equations. J. Math. Anal. Appl. 282(2), 766-791 (2003) · Zbl 1040.35061 · doi:10.1016/S0022-247X(03)00254-3
[29] Gottlieb, S, Wang, C: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers’ Equation. J. Sci. Comput. 53(1), 102-128 (2012) · Zbl 1297.76126 · doi:10.1007/s10915-012-9621-8
[30] Cheng, K, Feng, W, Gottlieb, S, Wang, C: A Fourier pseudospectral method for the ‘good’ Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31(1), 202-224 (2015) · Zbl 1327.65195 · doi:10.1002/num.21899
[31] Du, Q, Guo, B, Shen, J: Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals. SIAM J. Numer. Anal. 39(3), 735-762 (2001) · Zbl 1007.76057 · doi:10.1137/S0036142900373737
[32] Canuto, C, Quarteroni, A: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38(157), 67-86 (1982) · Zbl 0567.41008 · doi:10.1090/S0025-5718-1982-0637287-3
[33] Baskara, A, Lowengrub, JS, Wang, C, Wise, SM: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51(5), 2851-2873 (2013) · Zbl 1401.82046 · doi:10.1137/120880677
[34] Mokhtari, R, Ziaratgahi, ST: Numerical solution of RLW equation using integrated radial basis functions. Appl. Comput. Math. 10(3), 428-448 (2011) · Zbl 1231.65181
[35] Chegini, NG, Salaripanah, A, Mokhtari, R, Isvand, D: Numerical solution of the regularized long wave equation using nonpolynomial splines. Nonlinear Dyn. 69(1-2), 459-471 (2012) · Zbl 1258.65076 · doi:10.1007/s11071-011-0277-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.