×

Boundary value problems for a coupled system of second-order nonlinear difference equations. (English) Zbl 1422.39024

Summary: We discuss the existence of nontrivial solutions to the boundary value problems for a coupled system of second-order nonlinear difference equations by using the critical point theory. The nontrivial solutions where neither of the components is identically zero are achieved under some sufficient conditions.

MSC:

39A12 Discrete version of topics in analysis
39A10 Additive difference equations

References:

[1] Ahmad, B; Nieto, JJ, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58, 1838-1843, (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091
[2] Liu, YJ; Ahmad, B; Agarwal, RP, Existence of solutions for a coupled system of nonlinear fractional differential equations with fractional boundary conditions on the half-line, Adv. Differ. Equ., 2013, (2013) · Zbl 1380.34015 · doi:10.1186/1687-1847-2013-46
[3] Lu, WL; Chen, TP, New approach to synchronization analysis of linearly coupled ordinary differential systems, Physica D, 213, 214-230, (2006) · Zbl 1105.34031 · doi:10.1016/j.physd.2005.11.009
[4] Rehman, M; Khan, RA, A note on boundary value problems for a coupled system of fractional differential equations, Comput. Math. Appl., 61, 2630-2637, (2011) · Zbl 1221.34018 · doi:10.1016/j.camwa.2011.03.009
[5] Su, XW, Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 22, 64-69, (2009) · Zbl 1163.34321 · doi:10.1016/j.aml.2008.03.001
[6] Wang, G; Liu, WB; Zhu, SN; Zheng, T, Existence results for a coupled system of nonlinear fractional 2\(m\)-point boundary value problems at resonance, Adv. Differ. Equ., 2011, (2011) · Zbl 1272.34011 · doi:10.1186/1687-1847-2011-44
[7] Wang, JH; Xiang, HJ; Liu, ZG, Positive solution to nonzero boundary values problem for a coupled system of nonlinear fractional differential equations, Int. J. Differ. Equ., 2010, (2010) · Zbl 1207.34012
[8] Guo, ZM; Yu, JS, Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Ser. A, 46, 506-515, (2003) · Zbl 1215.39001 · doi:10.1007/BF02884022
[9] Guo, ZM; Yu, JS, The existence of periodic and subharmonic solutions to subquadratic second-order difference equations, J. Lond. Math. Soc., 68, 419-430, (2003) · Zbl 1046.39005 · doi:10.1112/S0024610703004563
[10] Zhou, Z; Yu, JS; Chen, YM, Periodic solutions of a 2\(n\)th-order nonlinear difference equation, Sci. China Math., 53, 41-50, (2010) · Zbl 1232.39019 · doi:10.1007/s11425-009-0167-7
[11] Zhou, Z; Yu, JS; Chen, YM, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math., 54, 83-93, (2011) · Zbl 1239.39010 · doi:10.1007/s11425-010-4101-9
[12] Zhou, Z; Ma, DF, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 58, 781-790, (2015) · Zbl 1328.39011 · doi:10.1007/s11425-014-4883-2
[13] Shi, HP; Liu, X; Zhang, YB, Nonexistence and existence results for a 2\(n\)th-order discrete Dirichlet boundary value problem, Kodai Math. J., 37, 492-505, (2014) · Zbl 1303.39005 · doi:10.2996/kmj/1404393901
[14] Shi, HP; Liu, X; Zhang, YB, Nonexistence and existence results for a 2\(n\)th-order \(p\)-Laplacian discrete Neumann boundary value problem, Mediterr. J. Math., 12, 419-432, (2016) · Zbl 1332.39010
[15] Bonanno, G; Candito, P; D’Aguì, G, Variational methods on finite dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud., 14, 915-939, (2014) · Zbl 1312.39002 · doi:10.1515/ans-2014-0406
[16] Caliari, M; Squassina, M, Location and phase segregation of ground and excited states for 2d Gross-Pitaevskii systems, Dyn. Partial Differ. Equ., 5, 117-137, (2008) · Zbl 1158.35322 · doi:10.4310/DPDE.2008.v5.n2.a2
[17] Ambrosetti, A; Colorado, E, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75, 67-82, (2007) · Zbl 1130.34014 · doi:10.1112/jlms/jdl020
[18] Huang, MH; Zhou, Z, Standing wave solutions for the discrete coupled nonlinear Schrödinger equations with unbounded potentials, Abstr. Appl. Anal., 2013, (2013) · Zbl 1291.34146
[19] Huang, MH; Zhou, Z, On the existence of ground state solutions of the periodic discrete coupled nonlinear Schrödinger lattice, J. Appl. Math., 2013, (2013) · Zbl 1397.35275
[20] Bonanno, G; Jebelean, P; Şerban, C, Superlinear discrete problems, Appl. Math. Lett., 52, 162-168, (2016) · Zbl 1330.39001 · doi:10.1016/j.aml.2015.09.005
[21] Chang, KC: Critical Point Theory and Its Applications. Shanghai Sci. Technol., Shanghai (1980) (in Chinese)
[22] Mawhin, J, Willem, M: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989) · Zbl 0676.58017 · doi:10.1007/978-1-4757-2061-7
[23] Rabinowitz, PH: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics, vol. 65. Am. Math. Soc., Providence (1986) · Zbl 0609.58002 · doi:10.1090/cbms/065
[24] Struwe, M: Variational Methods. Springer, Berlin (1996) · Zbl 0864.49001 · doi:10.1007/978-3-662-03212-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.