×

Existence and asymptotic behavior results of positive periodic solutions for discrete-time logistic model. (English) Zbl 1422.39009

Summary: A discrete-time logistic model with delay is studied. The existence of a positive periodic solution for a discrete-time logistic model is obtained by a continuation theorem of coincidence degree theory, and a sufficient condition is given to guarantee the global exponential stability of a periodic solution. Finally, an example is given to show the effectiveness of the results in this paper.

MSC:

39A10 Additive difference equations
39A12 Discrete version of topics in analysis
92D25 Population dynamics (general)
39A30 Stability theory for difference equations

References:

[1] Agarwal, RP, O’Regan, D, Wong, PJY: Positive Solutions of Differential, Difference and Integral Equations. Kluwer Academic, Dordrecht (1999) · Zbl 1157.34301 · doi:10.1007/978-94-015-9171-3
[2] Agarwal, RP: Difference Equations and Inequalities: Theory, Methods, and Applications, 2nd edn. Monographs and Textbooks in Pure and Applied Mathematics, vol. 228. Dekker, New York (2000) · Zbl 0952.39001
[3] Agarwal, RP, O’Regan, D: Infinite Interval Problems for Differential, Difference and Integral Equations. Kluwer Academic, Dordrecht (2001) · Zbl 0988.34002 · doi:10.1007/978-94-010-0718-4
[4] Zhang, R, Wang, Z, Chen, Y: Periodic solutions of a single species discrete population model with periodic harvest/stock. Comput. Math. Appl. 39, 77-90 (2000) · Zbl 0970.92019 · doi:10.1016/S0898-1221(99)00315-6
[5] Parhi, N: Behavior of solutions of delay differential equations of first order. Indian J. Pure Appl. Math. 33, 31-34 (2002) · Zbl 0995.39004
[6] Liu, Y: Ge, W, Global asymptotic behavior of a forced difference equation. Comput. Math. Appl. 47, 1177-1193 (2004) · Zbl 1071.39010 · doi:10.1016/S0898-1221(04)90112-5
[7] Li, Y, Zhu, L, Liu, P: Positive periodic solutions of nonlinear functional difference equations depending on a parameter. Comput. Math. Appl. 48, 1453-1459 (2004) · Zbl 1070.39018 · doi:10.1016/j.camwa.2004.08.006
[8] Jiang, D, O’Regan, D, Agarwal, RP: Optimal existence theory for single and multiple positive periodic solutions to functional difference equations. Appl. Math. Lett. 161, 441-462 (2005) · Zbl 1068.39009
[9] Hu, S, Wang, J: Global robust stability of a class of discrete-time interval neural networks. IEEE Trans. Circuits Syst. I, Regul. Pap. 53, 129-138 (2006) · Zbl 1374.82023 · doi:10.1109/TCSI.2005.854288
[10] Wang, L, Xu, Z: Sufficient and necessary conditions for global exponential stability of discrete-time recurrent neural networks. IEEE Trans. Circuits Syst. I, Regul. Pap. 53, 1373-1380 (2006) · Zbl 1374.39022 · doi:10.1109/TCSI.2006.874179
[11] Xiong, W, Cao, J: Global exponential stability of discrete-time Cohen-Grossberg neural networks. Neurocomputing 64, 433-446 (2005) · doi:10.1016/j.neucom.2004.08.004
[12] Yuan, Z, Hu, D, Huang, L: Stability and bifurcation analysis on a discrete-time neural network. J. Comput. Appl. Math. 177, 89-100 (2005) · Zbl 1063.93030 · doi:10.1016/j.cam.2004.09.010
[13] Zhao, H, Wang, L: Stability and bifurcation for discrete-time Cohen-Grossberg neural network. Appl. Math. Comput. 179, 787-798 (2006) · Zbl 1147.39303 · doi:10.1016/j.amc.2005.11.148
[14] Zou, L, Zhou, Z: Periodic solutions for nonautonomous discrete-time neural networks. Appl. Math. Lett. 19, 174-185 (2006) · Zbl 1092.39016 · doi:10.1016/j.aml.2005.05.004
[15] Chen, W, Lu, X, Liang, D: Global exponential stability for discrete-time neural networks with variable delays. Phys. Lett. A 358, 186-198 (2006) · Zbl 1142.93393 · doi:10.1016/j.physleta.2006.05.014
[16] Liang, J, Cao, J, Lam, J: Convergence of discrete-time recurrent neural networks with variable delay. Int. J. Bifurc. Chaos 15, 581-595 (2005) · Zbl 1098.68107 · doi:10.1142/S0218127405012235
[17] Liang, J, Cao, J, Ho, D: Discrete-time bidirectional associative memory neural networks with variable delays. Phys. Lett. A 335, 226-234 (2005) · Zbl 1123.68346 · doi:10.1016/j.physleta.2004.12.026
[18] Xiang, H, Yan, K, Wang, B: Existence and global stability of periodic solution for delayed discrete high-order Hopfield-type neural networks. Discrete Dyn. Nat. Soc. 3, 281-297 (2005) · Zbl 1135.39008 · doi:10.1155/DDNS.2005.281
[19] Hu, Z, Tang, Z, Jiang, H: Stability analysis in a class of discrete SIRS epidemic models. Nonlinear Anal., Real World Appl. 13, 2017-2033 (2012) · Zbl 1254.92082 · doi:10.1016/j.nonrwa.2011.12.024
[20] Zhang, R, Chen, Z: Value distribution of difference polynomials of meromorphic functions. Sci. Sin., Math. 42, 1115-1130 (2012) · Zbl 1488.30204 · doi:10.1360/012011-760
[21] Latreuch, Z, Belaidi, B: Growth and oscillation of meromorphic solutions of linear difference equations. Mat. Vesn. 66, 213-222 (2014) · Zbl 1349.39023
[22] Zheng, X, Tu, J: Growth of meromorphic solutions of linear difference equations. J. Math. Anal. Appl. 384, 349-356 (2011) · Zbl 1231.39003 · doi:10.1016/j.jmaa.2011.05.069
[23] Chen, ZX: Zeros of entire solutions to complex linear difference equations. Acta Math. Sci. Ser. B Engl. Ed. 32, 1141-1148 (2012) · Zbl 1274.30115
[24] Gao, C: Solutions to discrete multiparameter periodic boundary value problems involving the p-Laplacian via critical point theory. Acta Math. Sci. Ser. B Engl. Ed. 34, 1225-1236 (2014) · Zbl 1324.39018 · doi:10.1016/S0252-9602(14)60081-3
[25] Henderson, J, Luca, R: Existence of positive solutions for a system of second-order multi-point discrete boundary value problems. J. Differ. Equ. Appl. 19, 1889-1906 (2013) · Zbl 1286.39003 · doi:10.1080/10236198.2013.788646
[26] Henderson, J, Luca, R: On a second-order nonlinear discrete multi-point eigenvalue problem. J. Differ. Equ. Appl. 20, 1005-1018 (2014) · Zbl 1300.39001 · doi:10.1080/10236198.2013.877895
[27] Yuan, C, Wen, X, Jiang, D: Existence and uniqueness of positive solution for nonlinear singular 2nth-order continuous and discrete Lidstone boundary value problems. Acta Math. Sci. Ser. B Engl. Ed. 831, 281-291 (2011) · Zbl 1240.34080
[28] Henderson, J, Luca, R: On a multi-point discrete boundary value problem. J. Differ. Equ. Appl. 19, 690-699 (2013) · Zbl 1262.39004 · doi:10.1080/10236198.2012.678839
[29] Pielou, E: An Introduction to Mathematical Ecology. Wiley-Interscience, New York (1974) · Zbl 0259.92001
[30] Kuang, Y: Delay Differential Equations with Applications in Population Dynamics. Academic Press, New York (1993) · Zbl 0777.34002
[31] Gopalasamy, K: Stability and Oscillation in Delay Equation of Population Dynamics. Kluwer Academic, Dordrecht (1992) · Zbl 0752.34039 · doi:10.1007/978-94-015-7920-9
[32] Teng, Z: On the persistence and positive periodic solution for planar competing Lotka-Volterra systems. Ann. Differ. Equ. 13, 275-286 (1997) · Zbl 0887.34038
[33] Gaines, R, Mawhin, J: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin (1977) · Zbl 0339.47031
[34] Fang, M, Wang, K: Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system. Math. Comput. Model. 35, 951-961 (2002) · Zbl 1050.39022 · doi:10.1016/S0895-7177(02)00062-6
[35] Li, W, Huo, H: Positive periodic solutions of delay difference equations and applications in population dynamics. J. Comput. Appl. Math. 176, 357-369 (2005) · Zbl 1068.39013 · doi:10.1016/j.cam.2004.07.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.