×

An efficient scheme for solving a system of fractional differential equations with boundary conditions. (English) Zbl 1422.34033

Summary: In this study, the sinc collocation method is used to find an approximate solution of a system of differential equations of fractional order described in the Caputo sense. Some theorems are presented to prove the applicability of the proposed method to the system of fractional order differential equations. Some numerical examples are given to test the performance of the method. Approximate solutions are compared with exact solutions by examples. Some graphs and tables are presented to show the performance of the proposed method.

MSC:

34A08 Fractional ordinary differential equations
34A45 Theoretical approximation of solutions to ordinary differential equations
26A33 Fractional derivatives and integrals
65L05 Numerical methods for initial value problems involving ordinary differential equations

References:

[1] Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives. Gordon & Breach, Yverdon (1993) · Zbl 0818.26003
[2] Miller, K, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) · Zbl 0789.26002
[3] Oldham, KB, Spanier, J: The Fractional Calculus. Academic Press, New York (1974) · Zbl 0292.26011
[4] Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[5] Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Series on Complexity, Nonlinearity and Chaos in Fractional Calculus Models and Numerical Methods. World Scientific, Singapore (2012) · Zbl 1248.26011 · doi:10.1142/8180
[6] Kilbas, A, Srivastava, H, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[7] Lakshmikantham, V, Leela, S, Vasundhara, DJ: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers (2009) · Zbl 1188.37002
[8] Yang, XJ, Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems, Therm. Sci., 21, 1161-1171, (2017) · doi:10.2298/TSCI161216326Y
[9] Yang, XJ; Machado, JT, A new fractional operator of variable order: application in the description of anomalous diffusion, Physica A, 481, 276-283, (2017) · Zbl 1495.35204 · doi:10.1016/j.physa.2017.04.054
[10] Yang, XJ; Srivastava, HM; Machado, JA, A new fractional derivative without singular kernel: application to the modelling of the steady heat flow, Therm. Sci., 20, 753-756, (2016) · doi:10.2298/TSCI151224222Y
[11] Yang, XJ; Machado, JT; Baleanu, D, On exact traveling-wave solution for local fractional Boussinesq equation in fractal domain, Fractals, 25, (2017) · doi:10.1142/S0218348X17400060
[12] Yang, XJ; Baleanu, D; Khan, Y; Mohyud-Din, ST, Local fractional variational iteration method for diffusion and wave equations on Cantor sets, Rom. J. Phys., 59, 36-48, (2014)
[13] Baleanu, D; Golmankhaneh, AK; Nigmatullin, R; Golmankhaneh, AK, Fractional Newtonian mechanics, Cent. Eur. J. Phys., 8, (2010) · Zbl 1189.70002
[14] Herrmann, R: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2014) · Zbl 1293.26001 · doi:10.1142/8934
[15] Sabatier, J, Agrawal, OP, Machado, JAT: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Berlin (2007) · Zbl 1116.00014 · doi:10.1007/978-1-4020-6042-7
[16] Meilanov, RP; Magomedov, RA, Thermodynamics in fractional calculus, J. Eng. Phys. Thermophys., 87, 1521-1531, (2014) · doi:10.1007/s10891-014-1158-2
[17] Carpinteri, A; Cornetti, P; Sapora, A, Nonlocal elasticity: an approach based on fractional calculus, Meccanica, 49, 2551-2569, (2014) · Zbl 1306.74010 · doi:10.1007/s11012-014-0044-5
[18] Secer, A; Alkan, S; Akinlar, MA; Bayram, M, Sinc-Galerkin method for approximate solutions of fractional order boundary value problems, Bound. Value Probl., 2013, (2013) · Zbl 1301.34011 · doi:10.1186/1687-2770-2013-281
[19] Algahtani, OJJ, Comparing the atangana-baleanu and Caputo-fabrizio derivative with fractional order: Allen Cahn model, Chaos Solitons Fractals, 89, 552-559, (2016) · Zbl 1360.35094 · doi:10.1016/j.chaos.2016.03.026
[20] Atangana, A; Baleanu, D, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20, 763-769, (2016) · doi:10.2298/TSCI160111018A
[21] Khalil, R; Al Horani, M; Yousef, A; Sababheh, M, A new definition of fractional derivative, J. Comput. Appl. Math., 264, 65-70, (2014) · Zbl 1297.26013 · doi:10.1016/j.cam.2014.01.002
[22] Atangana, A; Doungmo Goufo, EF, Extension of matched asymptotic method to fractional boundary layers problems, Math. Probl. Eng., 2014, (2014) · Zbl 1407.34005 · doi:10.1155/2014/107535
[23] Jafari, H; Daftardar-Gejji, V, Solving a system of nonlinear fractional differential equations using Adomian decomposition, J. Comput. Appl. Math., 196, 644-651, (2006) · Zbl 1099.65137 · doi:10.1016/j.cam.2005.10.017
[24] Duan, J; An, J; Xu, M, Solution of system of fractional differential equations by Adomian decomposition method, Appl. Math. J. Chin. Univ. Ser. A, 22, 7-12, (2007) · Zbl 1125.26008 · doi:10.1007/s11766-007-0002-2
[25] Dixit, S; Singh, O; Kumar, S, An analytic algorithm for solving system of fractional differential equations, J. Mod. Methods Numer. Math., 1, 12-26, (2010) · Zbl 1413.34014
[26] Erturk, VS; Momani, S, Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math., 215, 142-151, (2008) · Zbl 1141.65088 · doi:10.1016/j.cam.2007.03.029
[27] Golmankhaneh, AK; Golmankhaneh, AK; Baleanu, D, On nonlinear fractional Klein-Gordon equation, Signal Process., 91, 446-451, (2011) · Zbl 1203.94031 · doi:10.1016/j.sigpro.2010.04.016
[28] Khan, NA; Jamil, M; Ara, A; Khan, NU, On efficient method for system of fractional differential equations, Adv. Differ. Equ., 2011, (2011) · Zbl 1217.65134
[29] Abdulaziz, O; Hashim, I; Momani, S, Solving systems of fractional differential equations by homotopy-perturbation method, Phys. Lett. A, 372, 451-459, (2008) · Zbl 1217.81080 · doi:10.1016/j.physleta.2007.07.059
[30] Jafari, H; Seifi, S, Solving a system of nonlinear fractional partial differential equations using homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14, 1962-1969, (2009) · Zbl 1221.35439 · doi:10.1016/j.cnsns.2008.06.019
[31] Rawashdeh, MS; Al-Jammal, H, Numerical solutions for systems of nonlinear fractional ordinary differential equations using the FNDM, Mediterr. J. Math., 13, 4661-4677, (2016) · Zbl 1355.65090 · doi:10.1007/s00009-016-0768-7
[32] Mohsen, A; El-Gamel, M, On the Galerkin and collocation methods for two-point bound- ary value problems using sinc bases, Comput. Math. Appl., 56, 930-941, (2008) · Zbl 1155.65365 · doi:10.1016/j.camwa.2008.01.023
[33] Alkan, S, A new solution method for nonlinear fractional integro-differential equations, Discrete Contin. Dyn. Syst., Ser. S, 8, 1065-1077, (2015) · Zbl 1337.65175 · doi:10.3934/dcdss.2015.8.1065
[34] Alkan, S; Secer, A, Solving the nonlinear boundary value problems by Galerkin method with the sinc functions, Open Phys., 13, 389-394, (2015) · doi:10.1515/phys-2015-0050
[35] Alkan, S; Yildirim, K; Secer, A, An efficient algorithm for solving fractional differential equations with boundary conditions, Open Phys., 14, 6-14, (2016) · doi:10.1515/phys-2015-0048
[36] Hesameddini, E; Asadollahifard, E, Numerical solution of multi-order fractional differential equations via the sinc collocation method, Iran. J. Numer. Anal. Optim., 5, 37-48, (2015) · Zbl 1330.65105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.