×

Rényi entropy power inequality and a reverse. (English) Zbl 1421.94021

Summary: The aim of this paper is twofold. In the first part, we present a refinement of the Rényi Entropy Power Inequality (EPI) recently obtained by S. G. Bobkov and A. Marsiglietti [IEEE Trans. Inf. Theory 63, No. 12, 7747–7752 (2017; Zbl 1390.94613)]. The proof largely follows the approach of A. Dembo et al. [IEEE Trans. Inf. Theory 37, No. 6, 1501–1518 (1991; Zbl 0741.94001)] of employing Young’s convolution inequalities with sharp constants. In the second part, we study the reversibility of the Rényi EPI, and confirm a conjecture of K. Ball et al. [Stud. Math. 235, No. 1, 17–30 (2016; Zbl 1407.94055)] and M. Madiman et al. [The IMA Volumes in Mathematics and its Applications 161, 427–485 (2017; Zbl 1381.52013)] in two cases. Connections with various \(p\)th mean bodies in convex geometry are also explored.

MSC:

94A17 Measures of information, entropy
62B10 Statistical aspects of information-theoretic topics
52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)

References:

[1] E. Abbe, personal communication.
[2] S. Artstein, K. Ball, F. Barthe and A. Naor, On the rate of convergence in the entropic central limit theorem, Probab. Theory Related Fields 129 (2004), 381-390. · Zbl 1055.94004
[3] K. Ball, Logarithmically concave functions and sections of convex sets in Rn, Studia Math. 88 (1988), 69-84. · Zbl 0642.52011
[4] K. Ball, F. Barthe and A. Naor, Entropy jumps in the presence of a spectral gap, Duke Math. J. 119 (2003), 41-63. · Zbl 1036.94003
[5] K. Ball, P. Nayar and T. Tkocz, A reverse entropy power inequality for log-concave random vectors, Studia Math. 235 (2016), 17-30. · Zbl 1407.94055
[6] K. Ball and V. H. Nguyen, Entropy jumps for isotropic log-concave random vectors and spectral gap, Studia Math. 213 (2012), 81-96. · Zbl 1264.94077
[7] S. G. Bobkov, Convex bodies and norms associated to convex measures, Probab. Theory Related Fields 147 (2010), 302-332. · Zbl 1247.46011
[8] S. G. Bobkov and G. P. Chistyakov, Entropy power inequality for the R´enyi entropy, IEEE Trans. Inform. Theory 61 (2015), 708-714. · Zbl 1359.94300
[9] S. G. Bobkov and M. Madiman, The entropy per coordinate of a random vector is highly constrained under convexity conditions, IEEE Trans. Inform. Theory 57 (2011), 4940-4954. · Zbl 1365.94135
[10] S. G. Bobkov and M. Madiman, Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures, J. Funct. Anal. 262 (2012), 3309-3339. · Zbl 1246.52012
[11] S. G. Bobkov and A. Marsiglietti, Variants of entropy power inequality, arXiv:1609. 04897 (2016). · Zbl 1390.94613
[12] C. Borell, Convex set functions in d-space, Period. Math. Hungar. 6 (1975), 111-136. · Zbl 0307.28009
[13] J. Bourgain, On high-dimensional maximal functions associated to convex bodies, Amer. J. Math. 108 (1986), 1467-1476. · Zbl 0621.42015
[14] H. Busemann, A theorem on convex bodies of the Brunn-Minkowski type, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 27-31. · Zbl 0032.19001
[15] J. Costa, A. Hero and C. Vignat, On solutions to multivariate maximum α-entropy problems, in: Lecture Notes in Computer Sci. 2683, Springer, 2003, 211-228.
[16] M. H. M. Costa, A new entropy power inequality, IEEE Trans. Inform. Theory 31 (1985), 751-760. · Zbl 0585.94006
[17] T. M. Cover and Z. Zhang, On the maximum entropy of the sum of two dependent random variables, IEEE Trans. Inform. Theory 40 (1994), 1244-1246. · Zbl 0811.94016
[18] A. Dembo, T. M. Cover and J. A. Thomas, Information-theoretic inequalities, IEEE Trans. Inform. Theory 37 (1991), 1501-1518. · Zbl 0741.94001
[19] R. J. Gardner and A. A. Giannopoulos, p-cross-section bodies, Indiana Univ. Math. J. 48 (1999), 593-613. · Zbl 0935.52007
[20] R. J. Gardner and G. Zhang, Affine inequalities and radial mean bodies, Amer. J. Math. 120 (1998), 505-528. · Zbl 0908.52001
[21] E. Grinberg and G. Zhang, Convolutions, transforms, and convex bodies, Proc. London Math. Soc. (3) 78 (1999), 77-115. · Zbl 0974.52001
[22] A. Koldobsky, Inverse formula for the Blaschke-Levy representation, Houston J. Math. 23 (1997), 95-108. · Zbl 1002.52006
[23] E. H. Lieb, Proof of an entropy conjecture of Wehrl, Comm. Math. Phys. 62 (1978), 35-41. · Zbl 0385.60089
[24] M. Madiman, J. Melbourne and P. Xu, Forward and reverse entropy power inequalities in convex geometry, arXiv:1604.04225 (2016). · Zbl 1381.52013
[25] V. D. Milman, In´egalit´e de Brunn-Minkowski inverse et applications ‘a la th´eorie locale des espaces norm´es, C. R. Acad. Sci. Paris 302 (1986), 25-28. · Zbl 0604.52003
[26] E. Ram and I. Sason. On R´enyi entropy power inequalities, IEEE Trans. Inform. Theory 62 (2016), 6800-6815. · Zbl 1359.94356
[27] O. Rioul, Yet another proof of the entropy power inequality, IEEE Trans. Inform. Theory 63 (2017), 3595-3599. · Zbl 1369.94413
[28] G. Savar´e and G. Toscani, The concavity of R´enyi entropy power, IEEE Trans. Inform. Theory 60 (2014), 2687-2693. · Zbl 1360.94169
[29] C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948), 379-423, 623-656. · Zbl 1154.94303
[30] A. J. Stam, Some inequalities satisfied by the quantities of information of Fisher and Shannon, Information and Control 2 (1959), 101-112. · Zbl 0085.34701
[31] S. J. Szarek and D. Voiculescu, Shannon’s entropy power inequality via restricted Minkowski sums, in: Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1745, Springer, Berlin, 2000, 257-262. · Zbl 1002.94516
[32] S. Verd´u and D. Guo, A simple proof of the entropy-power inequality, IEEE Trans. Inform. Theory 52 (2006), 2165-2166. · Zbl 1318.94029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.