×

Turbulent boundary layers absent mean shear. (English) Zbl 1421.76117

Summary: We perform an experimental study to investigate the turbulent boundary layer above a stationary solid glass bed in the absence of mean shear. High Reynolds number (\(Re_\lambda\sim 300)\) horizontally homogeneous isotropic turbulence is generated via randomly actuated synthetic jet arrays [E. A. Variano and E. A. Cowen, ibid. 604, 1–32 (2008; Zbl 1151.76358)]. Each of the arrays is controlled by a spatio-temporally varying algorithm, which in turn minimizes the formation of secondary mean flows. One array consists of an \(8\times 8\) grid of jets, while the other is a \(16\times 16\) array. Particle image velocimetry measurements are used to study the isotropic turbulent region and the boundary layer formed beneath as the turbulence encounters a stationary wall. The flow is characterized with statistical metrics including the mean flow and turbulent velocities, turbulent kinetic energy, integral scales and the turbulent kinetic energy transport equation, which includes the energy dissipation rate, production and turbulent transport. The empirical constant in the H. Tennekes [ibid. 67, 561–567 (1975; Zbl 0302.76033)] model of Eulerian frequency spectra is calculated based on the dissipation results and temporal frequency spectra from acoustic Doppler velocimetry measurements. We compare our results to prior literature that addresses mean shear free turbulent boundary layer characterizations via grid-stirred tank experiments, moving-bed experiments, rapid-distortion theory and direct numerical simulations in a forced turbulent box. By varying the operational parameters of the randomly actuated synthetic jet array, we also find that we are able to control the turbulence levels, including integral length scales and dissipation rates, by changing the mean on-times in the jet algorithm.

MSC:

76F40 Turbulent boundary layers
76F25 Turbulent transport, mixing

Software:

bootstrap
Full Text: DOI

References:

[1] Brumley, B. H.; Jirka, G. H., Near-surface turbulence in a grid-stirred tank, J. Fluid Mech., 183, 235-263, (1987)
[2] Calmet, I.; Magnaudet, J., Statistical structure of high-Reynolds-number turbulence close to the free surface of an open-channel flow, J. Fluid Mech., 474, 355-378, (2003) · Zbl 1129.76324
[3] Cowen, E. A.; Monismith, S. G., A hybrid digital particle tracking velocimetry technique, Exp. Fluids, 22, 199-211, (1997)
[4] Cowen, E. A.; Sou, I. M.; Liu, P. L.; Raubenheimer, B., Particle image velocimetry measurements within a laboratory-generated swash zone, J. Engng Mech. ASCE, 129, 10, 1119-1129, (2003)
[5] Dabiri, J. O.; Bose, S.; Gemmeli, B.; Colin, S. P.; Costello, J. H., An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements, J. Expl Biol., 217, 331-336, (2014)
[6] De Silva, I. P. D.; Fernando, H. J. S., Oscillating grids as a source of nearly isotropic turbulence, Phys. Fluids, 6, 2455-2464, (1994)
[7] Doron, P.; Bertuccioli, L.; Katz, J.; Osborn, T. R., Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data, J. Phys. Oceanogr., 31, 2108-2134, (2000)
[8] Efron, B.; Tibshirani, R., An Introduction to the Bootstrap, (1993), Chapman & Hall · Zbl 0835.62038
[9] Herlina, H.; Wissink, J. G., Isotropic-turbulence-induced mass transfer across a severely contaminated water surface, J. Fluid Mech., 797, 665-682, (2016) · Zbl 1422.76072
[10] Hopfinger, E. J.; Toly, J.-A., Spatially decaying turbulence and its relation to mixing across density interfaces, J. Fluid Mech., 78, 1, 155-175, (1976)
[11] Hunt, J. C. R., Turbulence structure in thermal convection and shear-free boundary layers, J. Fluid Mech., 138, 161-184, (1984) · Zbl 0563.76088
[12] Hunt, J. C. R.; Kaimal, J. C.; Gaynor, J. E., Eddy structure in the convective boundary layer: new measurements and new concepts, Q. J. R. Meteorol. Soc., 114, 482, 827-858, (1988)
[13] Hunt, J.; Graham, J., Free-stream turbulence near plane boundaries, J. Fluid Mech., 84, 209-235, (1978) · Zbl 0365.76056
[14] Johnson, B. A.2016 Turbulent boundary layers and sediment suspension absent mean flow-induced shear. PhD thesis, Cornell University.
[15] Khakpour, H. R.; Shen, L.; Yue, D. K. P., Transport of passive scalar in turbulent shear flow under a clean or surfactant-contaminated free surface, J. Fluid Mech., 670, 527-557, (2011) · Zbl 1225.76153
[16] Kit, E.; Fernando, J. S.; Brown, J. A., Experimental examination of Eulerian frequency spectra in zero-mean-shear turbulence, Phys. Fluids, 7, 1168-1170, (1995)
[17] Liao, Q.; Cowen, E. A., An efficient anti-aliasing spectral continuous window shifting technique for PIV, Exp. Fluids, 38, 197-208, (2005)
[18] Makita, H., Realization of a large-scale turbulence field in a small wind tunnel, Fluid Dyn. Res., 8, 53-64, (1991)
[19] Mcdougall, T., Measurements of turbulence in a zero-mean-shear mixed layer, J. Fluid Mech., 94, 3, 409-431, (1979)
[20] Mckenna, S. P.; Mcgillis, W. R., Observations of flow repeatability and secondary circulation in an osillating grid-stirred tank, Phys. Fluids, 16, 9, 3499-3502, (2004) · Zbl 1187.76339
[21] Mydlarski, L.; Warhaft, Z., On the onset of high-Reynolds-number grid-generated wind tunnel turbulence, J. Fluid Mech., 320, 331-368, (1996)
[22] Pao, Y.-H., Structure of turbulent velocity and scalar fields at large wavenumbers, Phys. Fluids, 8, 6, 1063-1075, (1965)
[23] Perez-Alvarado, A.; Mydlarski, L.; Gaskin, S., Effect of the driving algorithm on the turbulence generated by a random jet array, Exp. Fluids, 57, 2, 20, (2016)
[24] Perot, B.; Moin, P., Shear-free turbulent boundary layers. Part 1. Physical insights into near-wall turbulence, J. Fluid Mech., 295, 199-227, (1995) · Zbl 0869.76028
[25] Perot, B.; Moin, P., Shear-free turbulent boundary layers. Part 2. New concepts for Reynolds stress transport equation modelling of inhomogeneous flows, J. Fluid Mech., 295, 229-245, (1995) · Zbl 0869.76028
[26] Peters, N., The turbulent burning velocity for large-scale and small-scale turbulence, J. Fluid Mech., 384, 107-132, (1999) · Zbl 0948.76087
[27] Pope, S. B., Turbulent Flows, (2000), Cambridge University Press · Zbl 0966.76002
[28] Rouse, H.; Dodu, J., Diffusion turbulente à travers une discontinuité de densité, La Houille Blanche, 10, 522-532, (1955)
[29] Shen, L.; Yue, D. K. P.; Triantafyllou, G. S., Effect of surfactants on free-surface turbulent flows, J. Fluid Mech., 506, 79-115, (2004) · Zbl 1073.76047
[30] Spalart, P. R., Direct simulation of a turbulent boundary layer up to r = 1410, J. Fluid Mech., 187, 61-98, (1988) · Zbl 0641.76050
[31] Teixeira, M. A. C.; Belcher, S. E., Dissipation of shear-free turbulence near boundaries, J. Fluid Mech., 422, 167-191, (2000) · Zbl 1005.76049
[32] Teixeira, M. A. C.; Da Silva, C. B., Turbulence dynamics near a turbulent/non-turbulent interface, J. Fluid Mech., 695, 257-287, (2012) · Zbl 1250.76113
[33] Tennekes, H., Eulerian and Lagrangian time microscales in isotropic turbulence, J. Fluid Mech., 67, 561-567, (1975) · Zbl 0302.76033
[34] Thomas, N. H.; Hancock, P. E., Grid turbulence near a moving wall, J. Fluid Mech., 82, 481-496, (1977)
[35] Thompson, S. M.; Turner, J. S., Mixing across an interface due to turbulence generated by an oscillating grid, J. Fluid Mech., 67, 2, 349-368, (1975)
[36] Uzkan, T.; Reynolds, W. C., A shear-free turbulent boundary layer, J. Fluid Mech., 28, 803-821, (1967)
[37] Variano, E. A.2007 Measurements of gas transfer and turbulence at a shear-free turbulent air-water interface. PhD thesis, Cornell University.
[38] Variano, E. A.; Bodenschatz, E.; Cowen, E. A., A random synthetic jet array driven turbulence tank, Exp. Fluids, 37, 613-615, (2004)
[39] Variano, E. A.; Cowen, E. A., A random-jet-stirred turbulence tank, J. Fluid Mech., 604, 1-32, (2008) · Zbl 1151.76358
[40] Variano, E. A.; Cowen, E. A., Turbulent transport of a high-Schmidt-number scalar near an air-water interface, J. Fluid Mech., 731, 259-287, (2013) · Zbl 1294.76174
[41] Von Kármán, T., Mechanische Ähnlichkeit und Turbulenz, Nachrichten von der Gesellschaft der Wissenschaften zu Goettingen, 5, 58-76, (1930) · JFM 56.1260.03
[42] Westerweel, J., Efficient detection of spurious vectors in particle image velocimetry data, Exp. Fluids, 16, 236-247, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.