×

Quantitative stability for anisotropic nearly umbilical hypersurfaces. (English) Zbl 1421.53009

Summary: We prove qualitative and quantitative stability of the following rigidity theorem: the only anisotropic totally umbilical closed hypersurface is the Wulff shape. Consider \(n \ge 2\), \(p\in (1, \, +\infty )\) and \(\Sigma \) an \(n\)-dimensional, closed hypersurface in \(\mathbb{R}^{n+1}\), which is the boundary of a convex, open set. We show that if the \(L^p\)-norm of the trace-free part of the anisotropic second fundamental form is small, then \(\Sigma \) must be \(W^{2, \, p}\)-close to the Wulff shape, with a quantitative estimate.

MSC:

53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces
53C24 Rigidity results
49Q10 Optimization of shapes other than minimal surfaces
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature

References:

[1] Barbosa, J.L., do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Mathematische Zeitschrift 185(3), 339-353 (1984) · Zbl 0513.53002
[2] De Lellis, C., De Rosa, A., Ghiraldin, F.: A direct approach to the anisotropic Plateau problem. Accepted by Advances in Calculus of Variations. (2017). https://doi.org/10.1515/acv-2016-0057. arxiv: https://arxiv.org/abs/1602.08757
[3] De Lellis, C., Müller, S.: Optimal rigidity estimates for nearly umbilical surfaces. J. Differ. Geom. 69(1), 75-110 (2005) · Zbl 1087.53004
[4] De Lellis, C., Müller, S.: A \[C^0\] C0 estimate for nearly umbilical surfaces. Calc. Var. Part. Differ. Equ. 26(3), 283-296 (2006) · Zbl 1100.53005
[5] De Lellis, C., Topping, P.: Almost-Schur lemma. Calc. Var. Part. Differ. Equ. 43(3-4), 347-354 (2012) · Zbl 1236.53036
[6] Delgadino, M.G., Maggi, F., Mihaila, C., Neumayer, R.: Bubbling with \[L^2\] L2-almost constant mean curvature and an Alexandrov-type theorem for crystals. arxiv:1705.10117 (2017) · Zbl 1421.35076
[7] De Philippis, G., De Rosa, A., Ghiraldin, F.: A direct approach to Plateau’s problem in any codimension. Adv. Math. 288, 59-80 (2015) · Zbl 1335.49067
[8] De Philippis, G., De Rosa, A., Ghiraldin, F.: Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies. Commun. Pure Appl. Math. 71(6), 1123-1148 (2018) · Zbl 1396.49044
[9] De Philippis, G., De Rosa, A., Ghiraldin, F.: Existence results for minimizers of parametric elliptic functionals. arxiv:1704.07801 (2017) · Zbl 1436.49055
[10] De Rosa, A.: Minimization of anisotropic energies in classes of rectifiable varifolds. SIAM J. Math. Anal. 50(1), 162-181 (2018) · Zbl 1381.49049
[11] De Rosa, A., Gioffrè, S.: Absence of bubbling phenomena for non convex anisotropic nearly umbilical and quasi Einstein hypersurfaces. arxiv:1803.09118 (2018) · Zbl 1482.52003
[12] Figalli, A., Maggi, F., Pratelli, A.: A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182(1), 167-211 (2010) · Zbl 1196.49033
[13] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften. Fundamental Principles of Mathematical Sciences, vol. 224, second edition. Springer, Berlin (1983) · Zbl 0562.35001
[14] Gioffrè, S.: Quantitative \[W^{2, \, p}\] W2,p-stability for almost Einstein hypersurfaces. (2017). arxiv:1703.01846 · Zbl 1408.53063
[15] Gioffrè, S.: A \[W^{2, \, p}\] W2,p-estimate for nearly umbilical hypersurfaces. arxiv:1612.08570 (2016)
[16] He, Y.J., Li, H.Z.: Integral formula of Minkowski type and new characterization of the Wulff shape. Acta Math. Sin. (Engl. Ser.) 24(4), 697-704 (2008) · Zbl 1152.53047
[17] Hirsch, M.W.: Differential Topology. Graduate Texts in Mathematics, vol 33. Springer, New York (1994). Corrected reprint of the 1976 original
[18] Koiso, M., Palmer, B.: Geometry and stability of surfaces with constant anisotropic mean curvature. Indiana Univ. Math. J. 54(6), 1817-1852 (2005) · Zbl 1120.58010
[19] Lamm, T., Metzger, J.: Small surfaces of Willmore type in Riemannian manifolds. Int. Math. Res. Not. 2010(19), 3786-3813 (2010) · Zbl 1202.53056
[20] Lamm, T., Metzger, J., Schulze, F.: Foliations of asymptotically flat manifolds by surfaces of Willmore type. Math. Ann. 350(1), 1-78 (2011) · Zbl 1222.53028
[21] Metzger, J.: Foliations of asymptotical ly flat 3-manifolds by 2-surfaces of prescribed mean curvature. J. Differ. Geom. 77(2), 201-236 (2007) · Zbl 1140.53013
[22] Neumayer, R.: A strong form of the quantitative Wulff inequality. SIAM J. Math. Anal. 48(3), 1727-1772 (2016) · Zbl 1337.49077
[23] Perez, D.: On nearly umbilical surfaces. http://user.math.uzh.ch/delellis/uploads/media/Daniel.pdf (2011)
[24] Roberts, A.W., Varberg, D.E.: Another proof that convex functions are locally Lipschitz. Am. Math. Mon. 81, 1014-1016 (1974) · Zbl 0289.26012
[25] Roth, J., Scheuer, J.: Pinching of the first eigenvalue for second order operators on hypersurfaces of the Euclidean space. Ann. Glob. Anal. Geom. 51(3), 287-304 (2017) · Zbl 1366.35107
[26] Roth, J., Scheuer, J.: Explicit rigidity of almost-umbilical hypersurfaces. Asian J. Math. (2017) · Zbl 1405.53078
[27] Scheuer, J.: Oscillation estimates for almost-umbilical closed hypersurfaces in Euclidean space. Bull. Aust. Math. Soc. 92(1), 133-144 (2015) · Zbl 1322.53011
[28] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1993) · Zbl 0798.52001
[29] Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. IV, 3rd edn. Publish or Perish Inc., Huston (1999) · Zbl 1213.53001
[30] Taylor, J.E.: Crystalline variational problems. Bull. Am. Math. Soc. 84(4), 568-588 (1978) · Zbl 0392.49022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.