×

Supercongruences related to \({}_3F_2(1)\) involving harmonic numbers. (English) Zbl 1421.11008

Summary: We provide various supercongruences for truncated series which involve central binomial coefficients and harmonic numbers. The corresponding infinite series are also evaluated.

MSC:

11A07 Congruences; primitive roots; residue systems
11B65 Binomial coefficients; factorials; \(q\)-identities
33C20 Generalized hypergeometric series, \({}_pF_q\)
33B15 Gamma, beta and polygamma functions
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)

References:

[1] Bailey, W. N., Generalized Hypergeometric Series (Cambridge University Press, Cambridge, 1935). · JFM 61.0406.01
[2] Chen, X. and Chu, W., Dixons \({}_3 F_2(1)\) and identities involving harmonic numbers and the Riemann zeta function, Discrete Math.310 (2010) 83-91. · Zbl 1250.33007
[3] Chisholm, S., Deines, A., Long, L., Nebe, G. and Swisher, H., \(p\)-adic analogues of Ramanujan type formulas for \(1 / \pi \), Mathematics32 (2013) 9-30. · Zbl 1296.11058
[4] Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th edn. (Academic Press, New York, 7th edition, 2007). · Zbl 1208.65001
[5] Guillera, J., More hypergeometric identities related to Ramanujan-type series, Ramanujan J.32 (2013) 5-22. · Zbl 1278.33003
[6] Jin, H.-T. and Du, D. K., Abel’s lemma and identities on harmonic numbers, Integers15 (2015) A22. · Zbl 1316.11014
[7] Kibelbek, J., Long, L., Moss, K., Sheller, B. and Yuan, H., Supercongruences and complex multiplication, J. Number Theory164 (2016) 166-178. · Zbl 1334.33020
[8] Kölbig, K. S., The polygamma function \(\Psi^{(k)}(x)\) for \(x = \frac{1}{4}\) and \(x = \frac{3}{4} \), J. Comput. Appl. Math.75 (1996) 43-46. · Zbl 0860.33002
[9] J.-C. Liu, Generalized Rodriguez-Villegas supercongruences involving \(p\)-adic Gamma functions, preprint (2017); arXiv:1611.07686v4 [math.NT].
[10] Long, L., Hypergeometric evaluations identities and supercongruences, Pacific J. Math.249 (2011) 405-418. · Zbl 1215.33002
[11] Long, L. and Ramakrishna, R., Some supercongruences occurring in truncated hypergeometric series, Adv. Math.290 (2016) 773-808. · Zbl 1336.33018
[12] Mattarei, S. and Tauraso, R., From generating series to polynomial congruences, J. Number Theory182 (2018) 179-205. · Zbl 1423.11016
[13] McCarthy, D. and Osburn, R., A \(p\)-adic analogue of a formula of Ramanujan, Arch. Math.91 (2008) 492-504. · Zbl 1175.33004
[14] Paule, P. and Schneider, C., Computer proofs of a new family of harmonic number identities, Adv. in Appl. Math.31 (2003) 359-378. · Zbl 1039.11007
[15] Prodinger, H., Human proofs of identities by Osburn and Schneider, Integers8 (2008) A10. · Zbl 1162.05004
[16] Robert, A., A Course in \(p\)-adic Analysis (Springer-Verlag, New York, 2000). · Zbl 0947.11035
[17] Sun, Z.-H., Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math.105 (2000) 193-223. · Zbl 0990.11008
[18] Sun, Z.-H., Congruences involving Bernoulli and Euler numbers, J. Number Theory128 (2008) 280-312. · Zbl 1154.11010
[19] Sun, Z.-H., Generalized Legendre polynomials and related supercongruences, J. Number Theory143 (2014) 293-319. · Zbl 1353.11005
[20] Z.-H. Sun, Determining \(x\) or \(y\) mod \(p^2\) with \(p = x^2 + d y^2\), preprint (2012); arXiv:1210:5237v4 [math.NT].
[21] Z.-H. Sun, New congruences involving harmonic numbers, preprint (2014); arXiv:1407.8465v4 [math.NT].
[22] Sun, Z.-H., A new series for \(\pi^3\) and related congruences, Int. J. Math.26 (2015) 1550055. · Zbl 1321.11023
[23] Tauraso, R., Congruences involving alternating multiple harmonic sum, Elec. J. Comb.17 (2010), Research Paper 16, 11 pp. · Zbl 1222.11006
[24] Van Hamme, L., Some conjectures concerning partial sums of generalized hypergeometric series, in \(p\)-adic Functional Analysis, , Vol. 192, Nijmegen, 1996 (Dekker, New York, 1997), pp. 223-236. · Zbl 0895.11051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.