×

Well-posedness by noise for scalar conservation laws. (English) Zbl 1420.60081

Summary: We consider stochastic scalar conservation laws with spatially inhomogeneous flux. The regularity of the flux function with respect to its spatial variable is assumed to be low, so that entropy solutions are not necessarily unique in the corresponding deterministic scalar conservation law. We prove that perturbing the system by noise leads to well-posedness.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
35L65 Hyperbolic conservation laws

References:

[1] Flandoli, F., Random Perturbation of PDEs and Fluid Dynamic Models, Volume 2015 of Lecture Notes in Mathematics (2010), Heidelberg: Springer, Heidelberg · Zbl 1221.35004
[2] Flandoli, F.; Romito, M., 211-218 (2002) · Zbl 1137.76353
[3] Flandoli, F.; Romito, M., Markov selections for the 3D stochastic Navier-Stokes equations, Probab Theory Relat Fields, 140, 3-4, 407-458 (2007) · Zbl 1133.76016
[4] Delarue, F.; Flandoli, F.; Vincenzi, D., Noise prevents collapse of Vlasov-Poisson point charges, Commun Pur Appl Math, 67, 10, 1700-1736 (2014) · Zbl 1302.35366
[5] Flandoli, F.; Gubinelli, M.; Priola, E., Well-posedness of the transport equation by stochastic perturbation, Invent Math, 180, 1, 1-53 (2010) · Zbl 1200.35226
[6] Diperna, R. J.; Lions, P.-L, Ordinary differential equations, transport theory and sobolev spaces, Invent Math, 98, 3, 511-547 (1989) · Zbl 0696.34049
[7] Ambrosio, L., Transport equation and cauchy problem for BV vector fields, Invent Math, 158, 2, 227-260 (2004) · Zbl 1075.35087
[8] Crasta, G.; De Cicco, V.; De Philippis, G., Kinetic formulation and uniqueness for scalar conservation laws with discontinuous flux, Comm Partial Diff Equations, 40, 4, 694-726 (2015) · Zbl 1326.35197
[9] Beck, L.; Flandoli, F.; Gubinelli, M.; Maurelli, M. (2014)
[10] Andreianov, B.; Karlsen, K. H.; Risebro, N. H., On vanishing viscosity approximation of conservation laws with discontinuous flux, Networks Heterogenous Media, 5, 3, 617-633 (2010) · Zbl 1270.35305
[11] Andreianov, B.; Karlsen, K. H.; Risebro, N. H., A theory of \(L^1\)-dissipative solvers for scalar conservation laws with discontinuous flux, Arch Rational Mech Anal, 201, 1, 27-86 (2011) · Zbl 1261.35088
[12] Crasta, G.; De Cicco, V.; De Philippis, G.; Ghiraldin, F., Structure of solutions of multidimensional conservation laws with discontinuous flux and applications to uniqueness, Arch Rational Mech Anal, 221, 2, 961-985 (2016) · Zbl 1338.35288
[13] Andreianov, B.; Mitrović, D., Entropy conditions for scalar conservation laws with discontinuous flux revisited, Ann Inst H. Poincaré Anal Non Linéaire, 32, 6, 1307-1335 (2015) · Zbl 1343.35158
[14] Attanasio, S.; Flandoli, F., Zero-noise solutions of linear transport equations without uniqueness: an example, C. R. Math Acad Sci Paris, 347, 13-14, 753-756 (2009) · Zbl 1167.35006
[15] Delarue, F.; Flandoli, F., The transition point in the zero noise limit for a 1D peano example, Dcds-A. Syst, 34, 10, 4071-4083 (2014) · Zbl 1314.60113
[16] Gyöngy, I.; Pardoux, E., On the regularization effect of space-time white noise on quasi-linear parabolic partial differential equations, Probab Theory Relat Fields, 97, 1-2, 211-229 (1993) · Zbl 0793.60064
[17] Butkovsky, O.; Mytnik, L. (2016)
[18] Flandoli, F.; Gubinelli, M.; Priola, E., Remarks on the stochastic transport equation with hölder drift, Rend Semin Mat Univ Politec Torino, 70, 1, 53-73 (2012) · Zbl 1292.60063
[19] Fedrizzi, E.; Flandoli, F., Noise prevents singularities in linear transport equations, J Funct Anal, 264, 6, 1329-1354 (2013) · Zbl 1273.60076
[20] Attanasio, S.; Flandoli, F., Renormalized solutions for stochastic transport equations and the regularization by bilinear multiplication noise, Comm Partial Diff Equations, 36, 8, 1455-1474 (2011) · Zbl 1237.60048
[21] Catellier, R.; Gubinelli, M., Averaging along irregular curves and regularisation of ODEs, Stochastic Process Appl, 126, 8, 2323-2366 (2016) · Zbl 1348.60083
[22] Catellier, R., Rough linear transport equation with an irregular drift, Stoch Pde Anal Comp, 4, 3, 477-534 (2016) · Zbl 1356.60097
[23] Menoukeu-Pamen, O.; Meyer-Brandis, T.; Nilssen, T.; Proske, F.; Zhang, T., A variational approach to the construction and Malliavin differentiability of strong solutions of SDE’s, Math Ann, 357, 2, 761-799 (2013) · Zbl 1282.60057
[24] Mohammed, S. E. A.; Nilssen, T. K.; Proske, F. N., Sobolev differentiable stochastic flows for SDEs with singular coefficients: applications to the transport equation, Ann Probab, 43, 3, 1535-1576 (2015) · Zbl 1333.60127
[25] Duboscq, R.; Réveillac, A., Stochastic regularization effects of semi-martingales on random functions, J Math Pures Appl, 106, 6, 1141-1173 (2016) · Zbl 1351.35274
[26] Flandoli, F.; Gubinelli, M.; Priola, E., Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations, Stochastic Process Appl, 121, 7, 1445-1463 (2011) · Zbl 1221.60082
[27] Gess, B.; Souganidis, P. E. (2016)
[28] Gassiat, P.; Gess, B. (2016)
[29] Lions, P. L.; Perthame, B.; Souganidis, P. E., Scalar conservation laws with rough (stochastic) fluxes, Stoch Pde Anal Comp, 1, 4, 664-686 (2013) · Zbl 1333.60140
[30] Lions, P.-L.; Perthame, B.; Souganidis, P. E., Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case, Stoch Pde Anal Comp, 2, 4, 517-538 (2014) · Zbl 1323.35233
[31] Gess, B.; Souganidis, P. E., Scalar conservation laws with multiple rough fluxes, Commun. Math Sci, 13, 6, 1569-1597 (2015) · Zbl 1329.60210
[32] Mariani, M., Large deviations principles for stochastic scalar conservation laws, Probab Theory Relat Fields, 147, 3-4, 607-648 (2010) · Zbl 1204.60057
[33] Lions, P.-L.; Perthame, B.; Tadmor, E., A kinetic formulation of multidimensional scalar conservation laws and related equations, J Am Math Soc, 7, 1, 169-191 (1994) · Zbl 0820.35094
[34] Gess, B.; Smith, S. (2017)
[35] Revuz, D.; Yor, M., Continuous Martingales and Brownian Motion, Volume 293 of Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (1999), Berlin: Springer-Verlag, Berlin · Zbl 0917.60006
[36] Protter, P. E., Stochastic Integration and Differential Equations, Volume 21 of Applications of Mathematics (New York) (2004), Berlin: Springer-Verlag, Berlin · Zbl 1041.60005
[37] Kružkov, S. N., First order quasilinear equations with several independent variables, Mat Sb. (N.S.), 81, 123, 228-255 (1970) · Zbl 0202.11203
[38] Lécureux-Mercier, M., Improved stability estimates for general scalar conservation laws, J Hyper Diff Equations, 08, 4, 727-757 (2011) · Zbl 1253.35079
[39] Dalibard, A.-L, Kinetic formulation for heterogeneous scalar conservation laws, Ann Inst H Poincaré Anal Non Linéaire, 23, 4, 475-498 (2006) · Zbl 1102.35066
[40] Kunita, H., École D’été de Probabilités de Saint-Flour, XII—1982, Volume 1097 of Lecture Notes in Math, Stochastic differential equations and stochastic flows of diffeomorphisms, 143-303 (1984), Berlin: Springer, Berlin · Zbl 0554.60066
[41] Chen, G.-Q.; Perthame, B., Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations, Ann Inst H Poincaré Anal Non Linéaire, 20, 4, 645-668 (2003) · Zbl 1031.35077
[42] Loeb, P. A.; Talvila, E., Lusin’s theorem and Bochner integration, Sci Math Jpn, 60, 1, 113-120 (2004) · Zbl 1069.28007
[43] Ethier, S. N.; Kurtz, T. G., Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, Markov processes (1986), New York: Wiley, New York · Zbl 0592.60049
[44] Krylov, N. V., Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Volume 96 of Graduate Studies in Mathematics (2008), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1147.35001
[45] Fedrizzi, E.; Flandoli, F., Pathwise uniqueness and continuous dependence of SDEs with non-regular drift, Stochastics, 83, 3, 241-257 (2011) · Zbl 1221.60081
[46] Vakhania, N. N.; Tarieladze, V. I.; Chobanyan, S. A., Probability Distributions on Banach Spaces, Volume 14 of Mathematics and Its Applications (Soviet Series) (1987), Dordrecht: D. Reidel Publishing Co, Dordrecht · Zbl 0698.60003
[47] Valadier, M., Methods of Nonconvex Analysis (Varenna, 1989), Volume 1446 of Lecture Notes in Math, Young measures, 152-188 (1990), Berlin: Springer, Berlin · Zbl 0738.28004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.