×

Characterizations of symmetric polyconvexity. (English) Zbl 1420.49004

Summary: Symmetric quasiconvexity plays a key role for energy minimization in geometrically linear elasticity theory. Due to the complexity of this notion, a common approach is to retreat to necessary and sufficient conditions that are easier to handle. This article focuses on symmetric polyconvexity, which is a sufficient condition. We prove a new characterization of symmetric polyconvex functions in the two- and three-dimensional setting, and use it to investigate relevant subclasses like symmetric polyaffine functions and symmetric polyconvex quadratic forms. In particular, we provide an example of a symmetric rank-one convex quadratic form in 3d that is not symmetric polyconvex. The construction takes the famous work by Serre from 1983 on the classical situation without symmetry as inspiration. Beyond their theoretical interest, these findings may turn out useful for computational relaxation and homogenization.

MSC:

49J10 Existence theories for free problems in two or more independent variables
49J45 Methods involving semicontinuity and convergence; relaxation
74B05 Classical linear elasticity
74G65 Energy minimization in equilibrium problems in solid mechanics

References:

[1] Alibert, J.-J., Dacorogna, B.: An example of a quasiconvex function that is not polyconvex in two dimensions. Arch. Ration. Mech. Anal. 117(2), 155-166, 1992 · Zbl 0761.26009
[2] Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 63(4):337-403, 1976/77 · Zbl 0368.73040
[3] Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100(1), 13-52, 1987 · Zbl 0629.49020
[4] Barroso, A.C., Fonseca, I., Toader, R.: A relaxation theorem in the space of functions of bounded deformation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29(1), 19-49, 2000 · Zbl 0960.49014
[5] Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications. SIAM Rev. 59(4), 703-766, 2017 · Zbl 1378.49011
[6] Bessis, D.N., Clarke, F.H.: Partial subdifferentials, derivates and Rademacher’s theorem. Trans. Am. Math. Soc. 351(7), 2899-2926, 1999 · Zbl 0924.49013
[7] Bhattacharya, K.: Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Contin. Mech. Thermodyn. 5(3), 205-242, 1993 · Zbl 0780.73005
[8] Bhattacharya, K.: Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect. Oxford Series on Materials Modelling. Oxford University Press, Oxford 2003 · Zbl 1109.74002
[9] Chenchiah, I.V., Bhattacharya, K.: The relaxation of two-well energies with possibly unequal moduli. Arch. Ration. Mech. Anal. 187(3), 409-479, 2008 · Zbl 1134.74042
[10] Chenchiah, I.V., Schlömerkemper, A.: Non-laminate microstructures in monoclinic-I martensite. Arch. Ration. Mech. Anal. 207(1), 39-74, 2013 · Zbl 1282.74068
[11] Cherkaev, A.: Variational Methods for Structural Optimization. Applied Mathematical Sciences. Springer, New York 2012
[12] Ciarlet, P.G.: Mathematical elasticity. Vol I: Three dimensional elasticity, Volume 20 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam 1988 · Zbl 0648.73014
[13] Conti, S., Dolzmann, G.: Relaxation in crystal plasticity with three active slip systems. Contin. Mech. Thermodyn. 28(5), 1477-1494, 2016 · Zbl 1355.74060
[14] Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation of a model in finite plasticity with two slip systems. Math. Models Methods Appl. Sci. 23(11), 2111-2128, 2013 · Zbl 1281.49006
[15] Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178(1), 125-148, 2005 · Zbl 1076.74017
[16] Dacorogna, B.: Direct methods in the calculus of variations, volume 78 of Applied Mathematical Sciences. Springer, New York, second edition, 2008 · Zbl 1140.49001
[17] Dacorogna, B., Haeberly, J.-P.: On convexity properties of homogeneous functions of degree one. Proc. R. Soc. Edinburgh Sect. A126(5), 947-956, 1996 · Zbl 0895.49002
[18] Dacorogna, B., Koshigoe, H.: On the different notions of convexity for rotationally invariant functions. Ann. Fac. Sci. Toulouse Math. (6)2(2), 163-184, 1993 · Zbl 0828.49016
[19] Dacorogna, B., Marcellini, P.: A counterexample in the vectorial calculus of variations. In Material instabilities in continuum mechanics (Edinburgh, 1985-1986), Oxford Sci. Publ., pages 77-83. Oxford Univ. Press, New York, 1988 · Zbl 0641.49007
[20] Dal Maso, G., Negri, M., Percivale, D.: Linearized elasticity as \[\Gamma\] Γ-limit of finite elasticity. Calculus of variations, nonsmooth analysis and related topics. Set-Valued Anal. 10(2-3), 165-183, 2002 · Zbl 1009.74008
[21] De Philippis, G., Rindler, F.: Characterization of generalized Young measures generated by symmetric gradients. Arch. Ration. Mech. Anal. 224(3), 1087-1125, 2017 · Zbl 1372.49018
[22] Ebobisse, B.F.: On lower semicontinuity of integral functionals in \[LD(\Omega )\] LD(Ω). Ricerche Mat. 49(1), 65-76, 2000 · Zbl 1027.49014
[23] Faraco, D., Zhong, X.: Quasiconvex functions and Hessian equations. Arch. Ration. Mech. Anal. 168(3), 245-252, 2003 · Zbl 1047.49017
[24] Fechte-Heinen, R., Schlömerkemper, A.: About lamination upper and convexification lower bounds on the free energy of monoclinic shape memory alloys in the context of \[T_3\] T3-configurations and \[R\] R-phase formation. Contin. Mech. Thermodyn. 28(6), 1601-1621, 2016
[25] Firoozye, N.B.: Optimal use of the translation method and relaxations of variational problems. Comm. Pure Appl. Math. 44(6), 643-678, 1991 · Zbl 0733.49018
[26] Fonseca, I., Müller, \[S.: \cal{A}\] A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30(6), 1355-1390, 1999 · Zbl 0940.49014
[27] Govindjee, S., Mielke, A., Hall, G.J.: The free energy of mixing for \[n\] n-variant martensitic phase transformations using quasi-convex analysis. J. Mech. Phys. Solids51(4), I-XXVI, 2003 · Zbl 1088.74040
[28] Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Internat. J. Solids Struct. 40(11), 2767-2791, 2003 · Zbl 1051.74539
[29] Harutyunyan, D., Milton, G.W.: Explicit examples of extremal quasiconvex quadratic forms that are not polyconvex. Calc. Var. Partial Differ. Equ. 54(2), 1575-1589, 2015 · Zbl 1329.26024
[30] Harutyunyan, D., Milton, G.W.: Towards characterization of all \[3\times 33\]×3 extremal quasiconvex quadratic forms. Comm. Pure Appl. Math. 70(11), 2164-2190, 2017 · Zbl 1499.74054
[31] Kohn, R.V.: The relationship between linear and nonlinear variational models of coherent phase transitions. In Transactions of the Seventh Army Conference on Applied Mathematics and Computing (West Point, NY, 1989), volume 90 of ARO Rep., pages 279-304. U.S. Army Res. Office, Research Triangle Park, NC, 1990 · Zbl 0692.73016
[32] Kohn, R.V.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3(3), 193-236, 1991 · Zbl 0825.73029
[33] Kruger, A.Y.: On Fréchet subdifferentials. J. Math. Sci. (N. Y.), 116(3):3325-3358, 2003. Optimization and related topics, 3 · Zbl 1039.49021
[34] Kružík, M.: On the composition of quasiconvex functions and the transposition. J. Convex Anal. 6(1), 207-213, 1999 · Zbl 0944.49011
[35] Le Dret, H., Raoult, A.: The quasiconvex envelope of the Saint Venant-Kirchhoff stored energy function. Proc. R. Soc. Edinburgh Sect. A125(6), 1179-1192, 1995 · Zbl 0843.73016
[36] Marcellini, P.: Quasiconvex quadratic forms in two dimensions. Appl. Math. Optim. 11(2), 183-189, 1984 · Zbl 0567.49007
[37] Martin, R.J., Ghiba, I.-D., Neff, P.: Rank-one convexity implies polyconvexity for isotropic, objective and isochoric elastic energies in the two-dimensional case. Proc. R. Soc. Edinburgh A147, 571-597, 2017 · Zbl 1369.74016
[38] Mielke, A.: Necessary and sufficient conditions for polyconvexity of isotropic functions. J. Convex Anal. 12(2), 291-314, 2005 · Zbl 1098.49013
[39] Morrey Jr., C.B.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2, 25-53, 1952 · Zbl 0046.10803
[40] Müller, S.: On quasiconvex functions which are homogeneous of degree \[11\]. Indiana Univ. Math. J. 41(1), 295-301, 1992 · Zbl 0736.26006
[41] Müller, S.: Variational models for microstructure and phase transitions. In Calculus of variations and geometric evolution problems (Cetraro, 1996), volume 1713 of Lecture Notes in Math., pages 85-210. Springer, Berlin, 1999 · Zbl 0968.74050
[42] Müller, S.: Quasiconvexity is not invariant under transposition. Proc. R. Soc. Edinburgh Sect. A130(2), 389-395, 2000 · Zbl 0980.49017
[43] Murat, F.: Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8(1), 69-102, 1981 · Zbl 0464.46034
[44] Peigney, M.: On the energy-minimizing strains in martensitic microstructures-Part 2: Geometrically linear theory. J. Mech. Phys. Solids61(6), 1511-1530, 2013 · Zbl 1366.74054
[45] Raitums, U.: Relaxation of quasilinear elliptic systems. ESAIM Control Optim. Calc. Var. 7, 309-334, 2002 · Zbl 1037.49011
[46] Rindler, F.: Lower semicontinuity for integral functionals in the space of functions of bounded deformation via rigidity and Young measures. Arch. Ration. Mech. Anal. 202(1), 63-113, 2011 · Zbl 1258.49014
[47] Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209-216, 1970 · Zbl 0199.47101
[48] Rockafellar, R.T.: Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original, Princeton Paperbacks · Zbl 0932.90001
[49] Rosakis, P.: Characterization of convex isotropic functions. J. Elasticity, 49(3):257-267, 1997/98 · Zbl 0906.73018
[50] Serre, D.: Formes quadratiques et calcul des variations. J. Math. Pures Appl. 62(2), 177-196, 1983 · Zbl 0529.49005
[51] Steigmann, D.: Frame-invariant polyconvex strain-energy functions for some anisotropic solids. Math. Mech. Solids8, 497-506, 2003 · Zbl 1052.74012
[52] Šverák, V.: New examples of quasiconvex functions. Arch. Ration. Mech. Anal. 119(4), 293-300, 1992 · Zbl 0823.26009
[53] Šverák, V.: Rank-one convexity does not imply quasiconvexity. Proc. R. Soc. Edinburgh Sect. A120(1-2), 185-189, 1992 · Zbl 0777.49015
[54] Tartar, L.: Compensated compactness and applications to partial differential equations. In Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, volume 39 of Res. Notes in Math., pages 136-212. Pitman, 1979 · Zbl 0437.35004
[55] Terpstra, F.J.: Die Darstellung biquadratischer Formen als Summen von Quadraten mit Anwendung auf die Variationsrechnung. Math. Ann. 116(1), 166-180, 1939 · JFM 64.0515.02
[56] Van Hove, L.: Sur l’extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusieurs fonctions inconnues. Nederl. Akad. Wetensch., Proc., 50:18-23=Indagationes Math. 9, 3-8 (1947), 1947 · Zbl 0029.26802
[57] Van Hove, L.: Sur le signe de la variation seconde des intégrales multiples à plusieurs fonctions inconnues. Acad. Roy. Belgique. Cl. Sci. Mém. Coll. in \[8^\circ 8\]∘. (2), 24(5):68, 1949 · Zbl 0036.34501
[58] Šilhavý, M.: Convexity conditions for rotationally invariant functions in two dimensions. In Applied nonlinear analysis, pages 513-530. Kluwer/Plenum, New York, 1999 · Zbl 0959.26008
[59] Šilhavý, M.: A remark on polyconvex functions with symmetry. J. Elasticity122(2), 255-260, 2016 · Zbl 1330.74023
[60] Zhang, K.: On equality of relaxations for linear elastic strains. Commun. Pure Appl. Anal. 1(4), 565-573, 2002 · Zbl 1032.49019
[61] Zhang, K.: The structure of rank-one convex quadratic forms on linear elastic strains. Proc. R. Soc. Edinburgh Sect. A133(1), 213-224, 2003 · Zbl 1205.49021
[62] Zhang, K.: An approximation theorem for sequences of linear strains and its applications. ESAIM Control Optim. Calc. Var. 10(2), 224-242, 2004 · Zbl 1085.49017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.