×

Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations with absorption. (English) Zbl 1420.35398

Summary: This paper rigorously analyses preconditioners for the time-harmonic Maxwell equations with absorption, where the PDE is discretised using curl-conforming finite-element methods of fixed, arbitrary order and the preconditioner is constructed using additive Schwarz domain decomposition methods. The theory developed here shows that if the absorption is large enough, and if the subdomain and coarse mesh diameters and overlap are chosen appropriately, then the classical two-level overlapping additive Schwarz preconditioner (with PEC boundary conditions on the subdomains) performs optimally – in the sense that GMRES converges in a wavenumber-independent number of iterations – for the problem with absorption. An important feature of the theory is that it allows the coarse space to be built from low-order elements even if the PDE is discretised using high-order elements. It also shows that additive methods with minimal overlap can be robust. Numerical experiments are given that illustrate the theory and its dependence on various parameters. These experiments motivate some extensions of the preconditioners which have better robustness for problems with less absorption, including the propagative case. At the end of the paper we illustrate the performance of these on two substantial applications; the first (a problem with absorption arising from medical imaging) shows the empirical robustness of the preconditioner against heterogeneity, and the second (scattering by a COBRA cavity) shows good scalability of the preconditioner with up to 3,000 processors.

MSC:

35Q61 Maxwell equations
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
78A45 Diffraction, scattering

Software:

MUMPS

References:

[1] Amestoy, Patrick R.; Duff, Iain S.; L’Excellent, Jean-Yves; Koster, Jacko, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 1, 15-41 (2001) · Zbl 0992.65018 · doi:10.1137/S0895479899358194
[2] Amrouche, C.; Bernardi, C.; Dauge, M.; Girault, V., Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21, 9, 823-864 (1998) · Zbl 0914.35094 · doi:10.1002/(SICI)1099-1476(199806)21:\(9\langle823\)::AID-MMA
[3] Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar, Multigrid in \(H(\operatorname{div})\) and \(H(\operatorname{curl})\), Numer. Math., 85, 2, 197-217 (2000) · Zbl 0974.65113 · doi:10.1007/PL00005386
[4] Beckermann, B.; Goreinov, S. A.; Tyrtyshnikov, E. E., Some remarks on the Elman estimate for GMRES, SIAM J. Matrix Anal. Appl., 27, 3, 772-778 (2005) · Zbl 1101.65032 · doi:10.1137/040618849
[5] Benamou, Jean-David; Despr\`es, Bruno, A domain decomposition method for the Helmholtz equation and related optimal control problems, J. Comput. Phys., 136, 1, 68-82 (1997) · Zbl 0884.65118 · doi:10.1006/jcph.1997.5742
[6] BeDaMa:07 C. Bernardi, M. Dauge, and Y. Maday Polynomials in the Sobolev world, HAL report hal-00153795, 2007.
[7] BoDoGrSpTo:2017:DD24Max M. Bonazzoli, V. Dolean, I. G. Graham, E. A. Spence, and P.-H. Tournier, A two-level domain-decomposition preconditioner for the time-harmonic Maxwell’s equations, Domain Decomposition Methods in Science and Engineering XXIV, Lecture Notes in Computational Science and Engineering, vol. 125, Springer, 2018, pp.149-157. · Zbl 1443.65417
[8] BoDoGrSpTo:17 M. Bonazzoli, V. Dolean, I. G. Graham, E. A. Spence, and P.-H. Tournier, Two-level preconditioners for the Helmholtz equation, Domain Decomposition Methods in Science and Engineering XXIV, Lecture Notes in Computational Science and Engineering, vol.125, Springer, 2018, pp. 139-147. · Zbl 1443.65416
[9] Bonazzoli, Marcella; Rapetti, Francesca, High-order finite elements in numerical electromagnetism: degrees of freedom and generators in duality, Numer. Algorithms, 74, 1, 111-136 (2017) · Zbl 1360.78045 · doi:10.1007/s11075-016-0141-8
[10] Boubendir, Y.; Antoine, X.; Geuzaine, C., A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation, J. Comput. Phys., 231, 2, 262-280 (2012) · Zbl 1243.65144 · doi:10.1016/j.jcp.2011.08.007
[11] Cai, Xiao-Chuan; Casarin, Mario A.; Elliott, Frank W., Jr.; Widlund, Olof B., Overlapping Schwarz algorithms for solving Helmholtz’s equation. Domain Decomposition methods, 10, Boulder, CO, 1997, Contemp. Math. 218, 391-399 (1998), Amer. Math. Soc., Providence, RI · Zbl 0909.65104 · doi:10.1090/conm/218/03034
[12] Cai, Xiao-Chuan; Widlund, Olof B., Domain decomposition algorithms for indefinite elliptic problems, SIAM J. Sci. Statist. Comput., 13, 1, 243-258 (1992) · Zbl 0746.65085 · doi:10.1137/0913013
[13] Cocquet, Pierre-Henri; Gander, Martin J., How large a shift is needed in the shifted Helmholtz preconditioner for its effective inversion by multigrid?, SIAM J. Sci. Comput., 39, 2, A438-A478 (2017) · Zbl 1365.65269 · doi:10.1137/15M102085X
[14] Colton, David; Kress, Rainer, Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences 93, xii+334 pp. (1998), Springer-Verlag, Berlin · Zbl 0893.35138 · doi:10.1007/978-3-662-03537-5
[15] Conen, Lea; Dolean, Victorita; Krause, Rolf; Nataf, Fr\'{e}d\'{e}ric, A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator, J. Comput. Appl. Math., 271, 83-99 (2014) · Zbl 1321.65172 · doi:10.1016/j.cam.2014.03.031
[16] CoDaNi:10 M. Costabel, M. Dauge, and S. Nicaise, Corner singularities and analytic regularity for linear elliptic systems. Part i: Smooth domains, 2010. https://hal.archives-ouvertes.fr/file/index/docid/453934/filename/CoDaNi_Analytic_Part_I.pdf.
[17] Dauge, Monique, Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics 1341, viii+259 pp. (1988), Springer-Verlag, Berlin · Zbl 0668.35001 · doi:10.1007/BFb0086682
[18] Dauge, Monique, Neumann and mixed problems on curvilinear polyhedra, Integral Equations Operator Theory, 15, 2, 227-261 (1992) · Zbl 0767.46026 · doi:10.1007/BF01204238
[19] Da:08 M. Dauge, Regularity and singularities in polyhedral domains: The case of Laplace and Maxwell equations, 2008. https://perso.univ-rennes1.fr/monique.dauge/publis/Talk_Karlsruhe08.pdf.
[20] Despr\'{e}s, Bruno, M\'{e}thodes de d\'{e}composition de domaine pour les probl\`“emes de propagation d”ondes en r\'{e}gime harmonique. Le th\'{e}or\`“eme de Borg pour l”\'{e}quation de Hill vectorielle, vi+233 pp. (1991), Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt · Zbl 0849.65085
[21] Dolean, V.; Gander, M. J.; Gerardo-Giorda, L., Optimized Schwarz methods for Maxwell’s equations, SIAM J. Sci. Comput., 31, 3, 2193-2213 (2009) · Zbl 1192.78044 · doi:10.1137/080728536
[22] Dolean, Victorita; Gander, Martin J.; Lanteri, Stephane; Lee, Jin-Fa; Peng, Zhen, Effective transmission conditions for domain decomposition methods applied to the time-harmonic curl-curl Maxwell’s equations, J. Comput. Phys., 280, 232-247 (2015) · Zbl 1349.78064 · doi:10.1016/j.jcp.2014.09.024
[23] Eiermann, Michael; Ernst, Oliver G., Geometric aspects of the theory of Krylov subspace methods, Acta Numer., 10, 251-312 (2001) · Zbl 1105.65328 · doi:10.1017/S0962492901000046
[24] Eisenstat, Stanley C.; Elman, Howard C.; Schultz, Martin H., Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20, 2, 345-357 (1983) · Zbl 0524.65019 · doi:10.1137/0720023
[25] El Bouajaji, M.; Dolean, V.; Gander, M. J.; Lanteri, S., Optimized Schwarz methods for the time-harmonic Maxwell equations with damping, SIAM J. Sci. Comput., 34, 4, A2048-A2071 (2012) · Zbl 1259.78047 · doi:10.1137/110842995
[26] El:82 H. C. Elman, Iterative methods for sparse nonsymmetric systems of linear equations, PhD thesis, Yale University, 1982.
[27] Engquist, Bjorn; Zhao, Hong-Kai, Absorbing boundary conditions for domain decomposition, Appl. Numer. Math., 27, 4, 341-365 (1998) · Zbl 0935.65135 · doi:10.1016/S0168-9274(98)00019-1
[28] Erlangga, Y. A.; Vuik, C.; Oosterlee, C. W., On a class of preconditioners for solving the Helmholtz equation, Appl. Numer. Math., 50, 3-4, 409-425 (2004) · Zbl 1051.65101 · doi:10.1016/j.apnum.2004.01.009
[29] Ernst, O. G.; Gander, M. J., Why it is difficult to solve Helmholtz problems with classical iterative methods. Numerical Analysis of Multiscale Problems, Lect. Notes Comput. Sci. Eng. 83, 325-363 (2012), Springer, Heidelberg · Zbl 1248.65128 · doi:10.1007/978-3-642-22061-6\_10
[30] Essai, Azeddine, Weighted FOM and GMRES for solving nonsymmetric linear systems, Numer. Algorithms, 18, 3-4, 277-292 (1998) · Zbl 0926.65036 · doi:10.1023/A:1019177600806
[31] Farhat, Charbel; Lesoinne, Michel; LeTallec, Patrick; Pierson, Kendall; Rixen, Daniel, FETI-DP: a dual-primal unified FETI method. I. A faster alternative to the two-level FETI method, Internat. J. Numer. Methods Engrg., 50, 7, 1523-1544 (2001) · Zbl 1008.74076 · doi:10.1002/nme.76
[32] Farhat, Charbel; Macedo, Antonini; Lesoinne, Michel, A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems, Numer. Math., 85, 2, 283-308 (2000) · Zbl 0965.65133 · doi:10.1007/PL00005389
[33] Gander, M. J.; Graham, I. G.; Spence, E. A., Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed?, Numer. Math., 131, 3, 567-614 (2015) · Zbl 1328.65238 · doi:10.1007/s00211-015-0700-2
[34] Gander, Martin J.; Magoul\`“es, Fr\'”{e}d\'{e}ric; Nataf, Fr\'{e}d\'{e}ric, Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. Sci. Comput., 24, 1, 38-60 (2002) · Zbl 1021.65061 · doi:10.1137/S1064827501387012
[35] Gander, Martin J.; Zhang, Hui, Optimized Schwarz methods with overlap for the Helmholtz equation, SIAM J. Sci. Comput., 38, 5, A3195-A3219 (2016) · Zbl 1351.65094 · doi:10.1137/15M1021659
[36] Girault, Vivette; Raviart, Pierre-Arnaud, Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics 5, x+374 pp. (1986), Springer-Verlag, Berlin · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[37] Gopalakrishnan, Jayadeep; Pasciak, Joseph E., Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations, Math. Comp., 72, 241, 1-15 (2003) · Zbl 1009.78009 · doi:10.1090/S0025-5718-01-01406-5
[38] Gopalakrishnan, Jayadeep; Pasciak, Joseph E.; Demkowicz, Leszek F., Analysis of a multigrid algorithm for time harmonic Maxwell equations, SIAM J. Numer. Anal., 42, 1, 90-108 (2004) · Zbl 1079.78025 · doi:10.1137/S003614290139490X
[39] Graham, I. G.; Lechner, P. O.; Scheichl, R., Domain decomposition for multiscale PDEs, Numer. Math., 106, 4, 589-626 (2007) · Zbl 1141.65084 · doi:10.1007/s00211-007-0074-1
[40] Graham, I. G.; L\"{o}hndorf, M.; Melenk, J. M.; Spence, E. A., When is the error in the \(h\)-BEM for solving the Helmholtz equation bounded independently of \(k\)?, BIT, 55, 1, 171-214 (2015) · Zbl 1320.65187 · doi:10.1007/s10543-014-0501-5
[41] Graham, I. G.; Spence, E. A.; Vainikko, E., Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption, Math. Comp., 86, 307, 2089-2127 (2017) · Zbl 1368.65250 · doi:10.1090/mcom/3190
[42] Graham, Ivan G.; Spence, Euan A.; Vainikko, Eero, Recent results on domain decomposition preconditioning for the high-frequency Helmholtz equation using absorption. Modern Solvers for Helmholtz Problems, Geosyst. Math., 3-26 (2017), Birkh\"{a}user/Springer, Cham · Zbl 1366.65113
[43] GrSpZo:17 I. G. Graham, E. A. Spence, and J. Zou, Domain decompositon with local impedance condition for the Helmholtz equation, arXiv preprint arXiv:1806.03731, 2018.
[44] Grisvard, P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24, xiv+410 pp. (1985), Pitman (Advanced Publishing Program), Boston, MA · Zbl 0695.35060
[45] Gustafson, Karl E.; Rao, Duggirala K. M., Numerical Range, Universitext, xiv+189 pp. (1997), Springer-Verlag, New York · Zbl 0874.47003 · doi:10.1007/978-1-4613-8498-4
[46] G\"{u}ttel, Stefan; Pestana, Jennifer, Some observations on weighted GMRES, Numer. Algorithms, 67, 4, 733-752 (2014) · Zbl 1304.65127 · doi:10.1007/s11075-013-9820-x
[47] Hiptmair, R., Finite elements in computational electromagnetism, Acta Numer., 11, 237-339 (2002) · Zbl 1123.78320 · doi:10.1017/S0962492902000041
[48] Hiptmair, Ralf; Moiola, Andrea; Perugia, Ilaria, Stability results for the time-harmonic Maxwell equations with impedance boundary conditions, Math. Models Methods Appl. Sci., 21, 11, 2263-2287 (2011) · Zbl 1331.35335 · doi:10.1142/S021820251100574X
[49] Hiptmair, Ralf; Toselli, Andrea, Overlapping and multilevel Schwarz methods for vector valued elliptic problems in three dimensions. Parallel Solution of Partial Differential Equations, Minneapolis, MN, 1997, IMA Vol. Math. Appl. 120, 181-208 (2000), Springer, New York · Zbl 0961.65109 · doi:10.1007/978-1-4612-1176-1\_8
[50] Jin, Jianming, The Finite Element Method in Electromagnetics, xxvi+753 pp. (2002), Wiley-Interscience [John Wiley & Sons], New York · Zbl 1001.78001
[51] Karypis, George; Kumar, Vipin, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 1, 359-392 (1998) · Zbl 0915.68129 · doi:10.1137/S1064827595287997
[52] Kimn, Jung-Han; Sarkis, Marcus, Restricted overlapping balancing domain decomposition methods and restricted coarse problems for the Helmholtz problem, Comput. Methods Appl. Mech. Engrg., 196, 8, 1507-1514 (2007) · Zbl 1173.76343 · doi:10.1016/j.cma.2006.03.016
[53] Kimn, Jung-Han; Sarkis, Marcus, Shifted Laplacian RAS solvers for the Helmholtz equation. Domain Decomposition Methods in Science and Engineering XX, Lect. Notes Comput. Sci. Eng. 91, 151-158 (2013), Springer, Heidelberg · doi:10.1007/978-3-642-35275-1\_16
[54] Kirchner, Kristin; Urban, Karsten; Zeeb, Oliver, Maxwell’s equations for conductors with impedance boundary conditions: discontinuous Galerkin and reduced basis methods, ESAIM Math. Model. Numer. Anal., 50, 6, 1763-1787 (2016) · Zbl 1355.35177 · doi:10.1051/m2an/2016006
[55] Modern Solvers for Helmholtz Problems, Geosystems Mathematics, xii+243 pp. (2017), Birkh\"{a}user/Springer, Cham · Zbl 1367.65005 · doi:10.1007/978-3-319-28832-1
[56] Leis, Rolf, Initial-Boundary Value Problems in Mathematical Physics, viii+266 pp. (1986), B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester · Zbl 0599.35001 · doi:10.1007/978-3-663-10649-4
[57] LiTi:12 J. Liesen and P. Tich\`y, The field of values bound on ideal GMRES, arXiv preprint arXiv:1211.5969, 2012.
[58] liu2003scattering J. Liu and J.-M. Jin, Scattering analysis of a large body with deep cavities, IEEE Trans. on Antennas and Propagation, 51 2003, no. 6, 1157-1167.
[59] McLean, William, Strongly Elliptic Systems and Boundary Integral Equations, xiv+357 pp. (2000), Cambridge University Press, Cambridge · Zbl 0948.35001
[60] Melenk, Jens Markus, On generalized finite-element methods, 227 pp. (1995), ProQuest LLC, Ann Arbor, MI
[61] Mo:11 A. Moiola, Trefftz-discontinuous Galerkin methods for time-harmonic wave problems, PhD thesis, Seminar for applied mathematics, ETH Z\"urich, 2011. Available at http://e-collection.library.ethz.ch/view/eth:4515.
[62] MoSp:17 A. Moiola and E. A. Spence, Explicit bounds for the time-harmonic Maxwell equations in heterogeneous media, In preparation, 2019.
[63] Monk, Peter, A finite element method for approximating the time-harmonic Maxwell equations, Numer. Math., 63, 2, 243-261 (1992) · Zbl 0757.65126 · doi:10.1007/BF01385860
[64] Monk, Peter, Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation, xiv+450 pp. (2003), Oxford University Press, New York · Zbl 1024.78009 · doi:10.1093/acprof:oso/9780198508885.001.0001
[65] Le Tallec, P., A mixed finite element approximation of the Navier-Stokes equations, Numer. Math., 35, 4, 381-404 (1980) · Zbl 0503.76033 · doi:10.1007/BF01399007
[66] Pasciak, J. E.; Zhao, J., Overlapping Schwarz methods in \(H\)(curl) on polyhedral domains, J. Numer. Math., 10, 3, 221-234 (2002) · Zbl 1017.65099 · doi:10.1515/JNMA.2002.221
[67] Sauter, Stefan A.; Schwab, Christoph, Boundary Element Methods, Springer Series in Computational Mathematics 39, xviii+561 pp. (2011), Springer-Verlag, Berlin · Zbl 1215.65183 · doi:10.1007/978-3-540-68093-2
[68] Sch\"{a}dle, Achim; Zschiedrich, Lin, Additive Schwarz method for scattering problems using the PML method at interfaces. Domain Decomposition Methods in Science and Engineering XVI, Lect. Notes Comput. Sci. Eng. 55, 205-212 (2007), Springer, Berlin · doi:10.1007/978-3-540-34469-8\_21
[69] Sc:01 J. Sch\"oberl, Commuting quasi-interpolation operators for mixed finite elements, Preprint ISC-01-10-MATH, Texas A&M University, College Station, TX, 2001. http://www.asc.tuwien.ac.at/ schoeberl/wiki/images/1/1e/Paper.pdf.
[70] Sc:09 J. Sch\"oberl, Numerical methods for Maxwell equations, 2009. http://www.asc.tuwien.ac.at/ schoeberl/wiki/lva/notes/maxwell.pdf.
[71] Simoncini, Valeria; Szyld, Daniel B., Recent computational developments in Krylov subspace methods for linear systems, Numer. Linear Algebra Appl., 14, 1, 1-59 (2007) · Zbl 1199.65112 · doi:10.1002/nla.499
[72] Starke, Gerhard, Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems, Numer. Math., 78, 1, 103-117 (1997) · Zbl 0888.65037 · doi:10.1007/s002110050306
[73] Tang, J. M.; Nabben, R.; Vuik, C.; Erlangga, Y. A., Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods, J. Sci. Comput., 39, 3, 340-370 (2009) · Zbl 1203.65073 · doi:10.1007/s10915-009-9272-6
[74] To:98 A. Toselli, Some results on overlapping Schwarz methods for the Helmholtz equation employing perfectly matched layers, Domain Decomposition Methods in Sciences and Engineering: Eleventh International Conference London, UK, Citeseer, 1998, pp. 539-545.
[75] Toselli, Andrea, Overlapping Schwarz methods for Maxwell’s equations in three dimensions, Numer. Math., 86, 4, 733-752 (2000) · Zbl 0980.78010 · doi:10.1007/PL00005417
[76] paperPP:2016 P.-H. Tournier, I. Aliferis, M. Bonazzoli, M. de Buhan, M. Darbas, V. Dolean, F. Hecht, P. Jolivet, I. El Kanfoud, C. Migliaccio, F. Nataf, Ch. Pichot, and S. Semenov, Microwave tomographic imaging of cerebrovascular accidents by using high-performance computing, Parallel Computing, 2019.
[77] Triebel, Hans, Theory of Function Spaces, Monographs in Mathematics 78, 284 pp. (1983), Birkh\"{a}user Verlag, Basel · Zbl 1235.46002 · doi:10.1007/978-3-0346-0416-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.