×

Discrete and continuous coupled nonlinear integrable systems via the dressing method. (English) Zbl 1420.35342

Summary: A discrete analog of the dressing method is presented and used to derive integrable nonlinear evolution equations, including two infinite families of novel continuous and discrete coupled integrable systems of equations of nonlinear Schrödinger type. First, a demonstration is given of how discrete nonlinear integrable equations can be derived starting from their linear counterparts. Then, starting from two uncoupled, discrete one-directional linear wave equations, an appropriate matrix Riemann-Hilbert problem is constructed, and a discrete matrix nonlinear Schrödinger system of equations is derived, together with its Lax pair. The corresponding compatible vector reductions admitted by these systems are also discussed, as well as their continuum limits. Finally, by increasing the size of the problem, three-component discrete and continuous integrable discrete systems are derived, as well as their generalizations to systems with an arbitrary number of components.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q15 Riemann-Hilbert problems in context of PDEs
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

References:

[1] AblowitzMJ, ClarksonPA. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge University Press; 1991. · Zbl 0762.35001
[2] AblowitzMJ, SegurH. Solitons and the Inverse Scattering Transform. Philadelphia: SIAM; 1981. · Zbl 0472.35002
[3] BelokolosED, BobenkoAI, EnolskiiVZ, ItsAR, MatveevVB. Algebro‐Geometric Approach to Nonlinear Integrable Equations. Berlin: Springer; 1994. · Zbl 0809.35001
[4] FaddeevLD, TakhtajanLA. Hamiltonian Methods in the Theory of Solitons. Berlin: Springer; 1987. · Zbl 0632.58004
[5] GesztesyF, HoldenH. Soliton Equations and Their Algebro‐Geometric Solutions. Cambridge: Cambridge University Press; 1990.
[6] NovikovS, ManakovSV, PitaevskiiLP, ZakharovVE. Theory of Solitons: The Inverse Scattering Method. New York: Plenum; 1984. · Zbl 0598.35002
[7] TrogdonT, OlverS. Riemann‐Hilbert problems, Their Numerical Solution and the Computation of Nonlinear Special Functions. Philadelphia: SIAM; 2016. · Zbl 1350.30003
[8] YangJ. Nonlinear Waves in Integrable and Non‐Integrable Systems. Philadelphia: SIAM; 2010. · Zbl 1234.35006
[9] AblowitzMJ, LadikJF. Nonlinear differential‐difference equations and Fourier analysis. J Math Phys. 1976;17:1011-1018. · Zbl 0322.42014
[10] TodaM. Vibration of a chain with a non‐linear interaction. J Phys Soc Jpn.1967;22:431-436.
[11] FlaschkaH. On the Toda lattice. II. Existence of integrals. Phys Rev B.1974;9:1924-1925. · Zbl 0942.37504
[12] FlaschkaH. On the Toda Lattice. II: Inverse‐Scattering Solution. Progr Theor Phys. 1974;51:703-716. · Zbl 0942.37505
[13] AblowitzMJ, HalburdR, HerbstB. On the extension of the Painlev property to difference equations. Nonlinearity 2000;13:889. · Zbl 0956.39003
[14] AblowitzMJ, PrinariB, TrubatchAD. Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge: Cambridge University Press; 2004. · Zbl 1057.35058
[15] BobenkoAI (ed.), SeilerR (ed.), eds. Discrete Integrable Geometry and Physics. Oxford: Clarendon Press; 1999. · Zbl 0918.00027
[16] BruschiM, RagniscoO, SantiniPM, Gui‐ZhangT. Integrable symplectic maps. Phys D.1991;49:273-294. · Zbl 0734.58023
[17] BruschiM, SantiniPM, RagniscoO. Integrable cellular automata. Phys Lett A.1992;169:151-160.
[18] DoliwaA, SantiniPM. Multidimensional Quadrilateral lattices are integrable. Phys Lett A.1997;233:365-372. · Zbl 1044.37528
[19] DoliwaA, SantiniPM, MañasM. Transformations of quadrilateral lattices. J Math Phys.2000;41:944. · Zbl 0987.37070
[20] GöktasU, HeremanW. Computation of conservation laws for nonlinear lattices. Phys D.1998;123:425-436. · Zbl 0940.34065
[21] GrammaticosB, RamaniA, SatsumaJ, WilloxR, Carstea AS. Reductions of integrable lattices. J Nonlinear Math Phys. 2005;12:363-371.
[22] HalburdR, KorhonenRJ. Finite‐order meromorphic solutions and the discrete Painlevé equations. Proc Lond Math Soc. 2006;94:443-474. · Zbl 1119.39014
[23] HietarintaJ, JoshiN, NijhoffF. Discrete Systems and Integrability. Cambridge: Cambridge University Press; 2016. · Zbl 1362.37130
[24] KajiwaraK, SatsumaJ. The conserved quantities and symmetries of the twodimensional Toda lattice hierarchy. J Math Phys. 1991;32:506. · Zbl 0734.35104
[25] KakeiS, NimmoJJC, WilloxR. Yang‐Baxter maps and the discrete KP hierarchy. Glasgow Math J. 2009;51A:107-119. · Zbl 1163.39008
[26] LeviD, WinternitzP. Continuous symmetries of discrete equations. Phys Lett A.1991;152:335-338.
[27] OhtaY, HirotaR, TsujimotoS, ImaiT. Casorati and discrete gram type determinant representations of solutions to the discrete KP hierarchy. J Phys Soc Jpn.1993;62:1872-1886. · Zbl 0972.37536
[28] OhtaY, HirotaR. A discrete KdV equation and its Casorati determinant solution. J Phys Soc Jpn.1991;60:2095.
[29] SantiniPM. Multiscale expansions of difference equations in the small lattice spacing regime, and a vicinity and integrability test. I. J Phys A.2010;43:045209. · Zbl 1184.35309
[30] AblowitzMJ, KaupDJ, NewellAC, SegurH. The inverse scattering transform ‐ Fourier analysis for nonlinear problems. Stud Appl Math.1974;53:249-315. · Zbl 0408.35068
[31] ZakharovVE, ShabatAB. A scheme for integrating nonlinear equations of mathematical physics by the method of the inverse scattering problem, Part I. Funct Anal Appl. 1974;8:43-53. · Zbl 0303.35024
[32] ZakharovVE, ShabatAB. A scheme for integrating nonlinear equations of mathematical physics by the method of the inverse scattering problem, Part II. Funct Anal Appl. 1979;31:13-22.
[33] AblowitzMJ, FokasAS. Complex Variables: Introduction and Applications. Cambridge: Cambridge University Press; 2003. · Zbl 1088.30001
[34] GakhovFD. Boundary Value Problems. Oxford: Pergamon Press; 1966. · Zbl 0141.08001
[35] FokasAS. A Unified Approach to Boundary Value Problems. Philadelphia: SIAM; 2008. · Zbl 1181.35002
[36] FokasAS, ZakharovVE. The dressing method and nonlocal Riemann‐Hilbert problems. J Nonlinear Sci. 1992;2:109-134. · Zbl 0872.58032
[37] Pinotsis, DA. The Riemann-Hilbert formalism for certain linear and nonlinear integrable PDEs. J Nonlinear Math Phys. 2007;14:466-485.
[38] BiondiniG, WangQ. Novel systems of resonant wave interactions. J Phys A.2015;48:225203. · Zbl 1320.35248
[39] IedaJ, MiyakawaT, WadatiM. Exact analysis of soliton dynamics in spinor Bose‐Einstein condensates. Phys Rev Lett. 2004;93:194102.
[40] SzankowskiP, TrippenbachM, InfeldE, RowlandsG. A class of compact entities in three component Bose-Einstein condensates. Phys Rev A.2011;83:013626.
[41] WadatiM, TsuchidaN. Wave propagations in the F=1 spinor Bose-Einstein condensates. J Phys Soc Jpn. 2006;75:014301.
[42] KevrekidisPG (ed.), FrantzeskakisDJ (ed.), Carretero‐GonzálezR (ed.), eds. Emergent Nonlinear Phenomena in Bose‐Einstein Condensates. New York: Springer; 2008. · Zbl 1137.82003
[43] PitaevskiiP, StringariS. Bose‐Einstein Condensation. Oxford: Clarendon Press; 2003. · Zbl 1110.82002
[44] ManakovSV. On the theory of two‐dimensional stationary self‐focusing of electromagnetic waves. Sov Phys JETP. 1974;38:248-253.
[45] BiondiniG, HwangG. Initial‐boundary value problems for discrete evolution equations: discrete linear Schrödinger and integrable discrete nonlinear Schrödinger equations. Inv Probl.2008;24:1-44. · Zbl 1157.35115
[46] AblowitzMJ, MusslimaniZ. Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity2016;29:915. · Zbl 1338.37099
[47] BiondiniG, WangD. Initial‐boundary‐value problems for discrete linear evolution equations. IMA J Appl Math. 2010;75:968-997. · Zbl 1218.34090
[48] AblowitzMJ, ZiadHM. Integrable nonlocal nonlinear Schrödinger equation. Phys Rev Lett. 2013;110:064105.
[49] AblowitzMJ, MusslimaniZ. Integrable discrete PT symmetric model. Phys Rev E.2014;90:032912.
[50] FokasAS, GelfandIM. Integrability of linear and nonlinear evolution equations and the associated nonlinear Fourier transforms. Lett Math Phys. 1994;32:189-210. · Zbl 0807.35138
[51] TsuchidaT, UjinoH, WadatiM. Integrable semi‐discretization of the coupled modified KdV equations. J Math Phys. 1998;39:4785. · Zbl 0933.35176
[52] ZhouX. The Riemann‐Hilbert problem and inverse scattering. SIAM J Math Anal. 1989;20:966-986. · Zbl 0685.34021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.