×

Mckay correspondence for semisimple Hopf actions on regular graded algebras. I. (English) Zbl 1420.16018

Summary: In establishing a more general version of the McKay correspondence, we prove Auslander’s theorem for actions of semisimple Hopf algebras \(H\) on noncommutative Artin-Schelter regular algebras \(A\) of global dimension two, where \(A\) is a graded \(H\)-module algebra, and the Hopf action on \(A\) is inner faithful with trivial homological determinant. We also show that each fixed ring \(A^H\) under such an action arises as an analogue of a coordinate ring of a Kleinian singularity.

MSC:

16T05 Hopf algebras and their applications
16E10 Homological dimension in associative algebras
14B05 Singularities in algebraic geometry

References:

[1] Auslander, M., On the purity of the branch locus, Amer. J. Math., 84, 116-125, (1962) · Zbl 0112.13101
[2] Bao, Y.-H.; He, J.-W.; Zhang, J., Pertinency of Hopf actions and quotient categories of Cohen-Macaulay algebras, (2016), preprint available at
[3] Bichon, J.; Natale, S., Hopf algebra deformations of binary polyhedral groups, Transform. Groups, 16, 2, 339-374, (2011) · Zbl 1238.16024
[4] Bryan, J.; Gholampour, A., The quantum mckay correspondence for polyhedral singularities, Invent. Math., 178, 3, 655-681, (2009) · Zbl 1180.14010
[5] Buchweitz, R.-O., From platonic solids to preprojective algebras via the mckay correspondence, 18-28, (2012), Oberwolfach Jahresbericht Annual Report
[6] Călinescu, C.; Dăscălescu, S.; Masuoka, A.; Menini, C., Quantum lines over non-cocommutative cosemisimple Hopf algebras, J. Algebra, 273, 2, 753-779, (2004) · Zbl 1042.16022
[7] Chan, D., Mckay correspondence for canonical orders, Trans. Amer. Math. Soc., 362, 4, 1765-1795, (2010) · Zbl 1203.14007
[8] Chan, K.; Kirkman, E.; Walton, C.; Zhang, J. J., Mckay correspondence for semisimple Hopf actions on regular graded algebras, part II, J. Noncommut. Geom., (2016), in press, preprint available at
[9] Chan, K.; Kirkman, E.; Walton, C.; Zhang, J. J., Quantum binary polyhedral groups and their actions on quantum planes, J. Reine Angew. Math., 719, 211-252, (2016) · Zbl 1401.16045
[10] Chirvasitu, A.; Smith, S. P., Exotic elliptic algebras of dimension 4, Adv. Math., 309, 558-623, (2017), With an appendix by Derek Tomlin · Zbl 1427.16018
[11] Davies, A., Cocycle twists of algebras, (2014), University of Manchester, Thesis available at · Zbl 1386.16013
[12] Davies, A., Cocycle twists of algebras, Comm. Algebra, 45, 3, 1347-1363, (2017) · Zbl 1386.16013
[13] Happel, D.; Preiser, U.; Ringel, C. M., Binary polyhedral groups and Euclidean diagrams, Manuscripta Math., 31, 1-3, 317-329, (1980) · Zbl 0436.20005
[14] Jing, N.; Zhang, J. J., Gorensteinness of invariant subrings of quantum algebras, J. Algebra, 221, 2, 669-691, (1999) · Zbl 0954.16014
[15] Kirillov, A.; Ostrik, V., On a q-analogue of the mckay correspondence and the ADE classification of \(s l_2\) conformal field theories, Adv. Math., 171, 2, 183-227, (2002) · Zbl 1024.17013
[16] Kirkman, E.; Kuzmanovich, J.; Zhang, J. J., Gorenstein subrings of invariants under Hopf algebra actions, J. Algebra, 322, 10, 3640-3669, (2009) · Zbl 1225.16015
[17] Kirkman, E.; Kuzmanovich, J.; Zhang, J. J., Invariant theory of finite group actions on down-up algebras, Transform. Groups, 20, 1, 113-165, (2015) · Zbl 1356.16021
[18] Kirkman, E.; Kuzmanovich, J.; Zhang, J. J., Noncommutative complete intersections, J. Algebra, 429, 253-286, (2015) · Zbl 1360.16012
[19] Leuschke, G. J., Non-commutative crepant resolutions: scenes from categorical geometry, (Progress in Commutative Algebra 1, (2012), de Gruyter Berlin), 293-361 · Zbl 1254.13001
[20] Leuschke, G. J.; Wiegand, R., Cohen-Macaulay representations, Mathematical Surveys and Monographs, vol. 181, (2012), American Mathematical Society Providence, RI · Zbl 1252.13001
[21] Lu, D. M.; Palmieri, J. H.; Wu, Q.; Zhang, J. J., Koszul equivalences in \(A_\infty\)-algebras, New York J. Math., 14, 325-378, (2008) · Zbl 1191.16011
[22] Masuoka, A., Cocycle deformations and Galois objects for some cosemisimple Hopf algebras of finite dimension, (New Trends in Hopf Algebra Theory, La Falda, 1999, Contemp. Math., vol. 267, (2000), Amer. Math. Soc. Providence, RI), 195-214 · Zbl 0985.16025
[23] McKay, J., Graphs, singularities, and finite groups, (The Santa Cruz Conference on Finite Groups, Univ. California, Santa Cruz, Calif., 1979, Proc. Sympos. Pure Math., vol. 37, (1980), Amer. Math. Soc. Providence, RI), 183-186 · Zbl 0451.05026
[24] Montgomery, S., Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, (1993), Conference Board of the Mathematical Sciences Washington, DC · Zbl 0804.16041
[25] Montgomery, S., Algebra properties invariant under twisting, (Hopf Algebras in Noncommutative Geometry and Physics, Lecture Notes in Pure and Appl. Math., vol. 239, (2005), Dekker New York), 229-243 · Zbl 1080.16042
[26] Mori, I., Mckay-type correspondence for AS-regular algebras, J. Lond. Math. Soc. (2), 88, 1, 97-117, (2013) · Zbl 1281.16035
[27] Mori, I.; Ueyama, K., Ample group action on AS-regular algebras and noncommutative graded isolated singularities, Trans. Amer. Math. Soc., 368, 10, 7359-7383, (2016) · Zbl 1378.16020
[28] Reyes, M.; Rogalski, D.; Zhang, J. J., Skew Calabi-Yau algebras and homological identities, Adv. Math., 264, 308-354, (2014) · Zbl 1336.16011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.