×

Suspension Taylor-Couette flow: co-existence of stationary and travelling waves, and the characteristics of Taylor vortices and spirals. (English) Zbl 1419.76664

Summary: Flow visualization and particle image velocimetry (PIV) measurements are used to unravel the pattern transition and velocity field in the Taylor-Couette flow (TCF) of neutrally buoyant non-Brownian spheres immersed in a Newtonian fluid. With increasing Reynolds number \((Re)\) or the rotation rate of the inner cylinder, the bifurcation sequence in suspension TCF remains same as in its Newtonian counterpart (i.e. from the circular Couette flow (CCF) to stationary Taylor vortex flow (TVF) and then to travelling wavy Taylor vortices (WTV) with increasing \(Re\)) for small particle volume fractions \((\phi<0.05)\). However, at \(\phi\geqslant 0.05\), non-axisymmetric patterns such as (i) the spiral vortex flow (SVF) and (ii) two mixed or co-existing states of stationary (TVF, axisymmetric) and travelling (WTV or SVF, non-axisymmetric) waves, namely (ii\(a\)) the ‘TVF\(+\)WTV’ and (ii\(b\)) the ‘TVF\(+\)SVF’ states, are found, with the former as a primary bifurcation from CCF. While the SVF state appears both in the ramp-up and ramp-down experiments as in the work of M. V. Majji et al. [“Inertial flow transitions of a suspension in Taylor-Couette geometry”, ibid. 835, 936–969 (2018; doi:10.1017/jfm.2017.754)], new co-existing patterns are found only during the ramp-up protocol. The secondary bifurcation TVF \(\leftrightarrow\) WTV is found to be hysteretic or sub-critical for \(\phi\geqslant 0.1\). In general, there is a reduction in the value of the critical Reynolds number, i.e. \(Re_c (\phi\neq 0)<Re_c(\phi=0) \), for both primary and secondary transitions. The wave speeds of both travelling waves (WTV and SVF) are approximately half of the rotational velocity of the inner cylinder, with negligible dependence on \(\phi\). The analysis of the radial-axial velocity field reveals that the Taylor vortices in a suspension are asymmetric and become increasingly anharmonic, with enhanced radial transport, with increasing particle loading. Instantaneous streamline patterns on the axial-radial plane confirm that the stationary Taylor vortices can indeed co-exist either with axially propagating spiral vortices or azimuthally propagating wavy Taylor vortices – their long-time stability is demonstrated. It is shown that the azimuthal velocity is considerably altered for \(\phi\geqslant 0.05\), resembling shear-band type profiles, even in the CCF regime (i.e. at sub-critical Reynolds numbers) of suspension TCF; its possible role on the genesis of observed patterns as well as on the torque scaling is discussed.

MSC:

76T20 Suspensions

Software:

ParaView
Full Text: DOI

References:

[1] Abcha, N.; Crumeyrolle, O.; Ezersky, A. B.; Mutabazi, I., Velocity field of the spiral vortex flow in the Couette-Taylor system, Eur. Phys. J. E, 35, 20, (2013)
[2] Adrian, R. J.; Westerweel, J., Particle Image Velocimetry, (2011), Cambridge University Press
[3] Ahrens, J., Geveci, B. & Law, C.2005Paraview: an end-user tool for large data visualization. In The Visualization Handbook (ed. Hansen, C. D. & Johnson, C. R.), pp. 717-731. Elsevier.
[4] Andereck, C. D.; Liu, S. S.; Swinney, H. L., Flow regimes in a circular Couette system with independently rotating cylinders, J. Fluid Mech., 164, 155-183, (1986)
[5] Bailey, B. C.; Yoda, M., An aqueous low-viscosity density-and refractive index-matched suspension system, Exp. Fluids, 35, 1, 1-3, (2003)
[6] Benjamin, T. B., Bifurcation phenomena in steady flows of a viscous fluid. I. Theory, Proc. R. Soc. Lond. A, 359, 1-26, (1978) · Zbl 0366.76033
[7] Benjamin, T. B., Bifurcation phenomena in steady flows of a viscous fluid. II. Experiments, Proc. R. Soc. Lond. A, 359, 27-43, (1978) · Zbl 0366.76034
[8] Benjamin, T. B.; Mullin, T., Anomalous modes in the Taylor experiment, Proc. R. Soc. Lond. A, 377, 221-249, (1981)
[9] Berkooz, G.; Holmes, P.; Lumley, J. L., The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 539-575, (1993)
[10] Blanc, F.; Peters, F.; Lemaire, E., Local transient rheological behavior of concentrated suspensions, J. Rheol., 55, 835-854, (2011)
[11] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, (1960), Dover
[12] Chossat, P.; Iooss, G., The Couette-Taylor Problem, (1994), Springer · Zbl 0817.76001
[13] Cliffe, K. A.; Mullin, T., A numerical and experimental study of anomalous modes in the Taylor experiment, J. Fluid Mech., 153, 243-258, (1985) · Zbl 0584.76117
[14] Cliffe, K. A.; Mullin, T.; Schaeffer, D. G., The onset of steady vortices in Taylor-Couette flow: the role of approximate symmetry, Phys. Fluids, 24, (2012) · Zbl 1309.76045
[15] Cole, J. A., Taylor-vortex instability and annulus-length effects, J. Fluid Mech., 75, 1, 1-15, (1976)
[16] Coles, D., Transition in circular Couette flow, J. Fluid Mech., 21, 3, 385-425, (1965) · Zbl 0134.21705
[17] Di Prima, R. C. & Swinney, H. L.1981Instabilities and Transition in flow between concentric rotating cylinders. In Hydrodynamic Instabilities and the Transition to Turbulence (ed. Swinney, H. L. & Gollub, J. P.). Springer. · Zbl 0494.76048
[18] Divoux, T.; Fardin, M. A.; Manneville, S.; Lerouge, S., Shear banding of complex fluids, Annu. Rev. Fluid Mech., 48, 539-575, (2016) · Zbl 1356.76014
[19] Donnelly, R. J.; Fultz, D., Experiments on the stability of viscous flow between rotating cylinders. II. Visual observations, Proc. R. Soc. Lond. A, 258, 101-123, (1960) · Zbl 0091.19303
[20] Dutcher, C. S.; Muller, S. J., Spatio-temporal mode dynamics and higher order transitions in high aspect ratio Newtonian Taylor-Couette flows, J. Fluid Mech., 641, 85-113, (2009) · Zbl 1183.76016
[21] Eckhardt, B.; Grossmann, S.; Lohse, D., Torque scaling in turbulent Taylor-Couette flow between independently rotating cylinders, J. Fluid Mech., 581, 221-250, (2007) · Zbl 1165.76342
[22] Fardin, M.-A.; Lasne, B.; Cardoso, O.; Grégoire, G.; Argentina, M.; Decruppe, J.-P.; Lerouge, S., Taylor-like vortices in shear-banding flow of giant micelles, Phys. Rev. Lett., 103, (2009)
[23] Groisman, A.; Steinberg, V., Solitary vortex pairs in viscoelastic Couette flow, Phys. Rev. Lett., 78, 8, 1460-1463, (1997)
[24] Grossmann, S.; Lohse, D.; Sun, C., High-Reynolds number Taylor-Couette turbulence, Annu. Rev. Fluid Mech., 48, 53-80, (2016) · Zbl 1356.76106
[25] Guazzelli, E.; Pouliquen, O., Rheology of dense granular suspensions, J. Fluid Mech., 852, P1, (2018) · Zbl 1415.76680
[26] Halow, J. S.; Wills, G. B., Experimental observations of sphere migration in Couette systems, Ind. Engng Chem. Fundam., 9, 4, 603-607, (1970)
[27] Hoffmann, C.; Lücke, M.; Pinter, A., Spiral vortices and Taylor vortices in the annulus between rotating cylinders and the effect of an axial flow, Phys. Rev. E, 69, (2004)
[28] Ho, B. P.; Leal, L. G., Inertial migration of rigid spheres in two-dimensional unidirectional flows, J. Fluid Mech., 65, 2, 365-400, (1974) · Zbl 0284.76076
[29] Jones, C. A., Transition to wavy Taylor vortices, J. Fluid Mech., 157, 135-162, (1985)
[30] King, G. P.; Li, Y.; Lee, W.; Swinney, H. L.; Marcus, P. S., Wave speeds in wavy Taylor-vortex flow, J. Fluid Mech., 141, 365-390, (1984)
[31] Larson, R. G.; Shaqfeh, E. S. G.; Muller, S. J., A purely elastic instability in Taylor-Couette flow, J. Fluid Mech., 218, 573-600, (1990) · Zbl 0706.76011
[32] Majji, M. V.; Banerjee, S.; Morris, J. F., Inertial flow transitions of a suspension in Taylor-Couette geometry, J. Fluid Mech., 835, 936-969, (2018)
[33] Majji, M. V.; Morris, J. F., Inertial migration of particles in Taylor-Couette flows, Phys. Fluids, 30, (2018)
[34] Martínez-Arias, B.; Peixinho, J.; Crumeyrolle, O.; Mutabazi, I., Effect of the number of vortices on the torque scaling in Taylor-Couette flow, J. Fluid Mech., 748, 756-767, (2014)
[35] Matas, J. P.; Morris, J. F.; Guazzelli, E., Transition to turbulence in particulate pipe flow, Phys. Rev. Lett., 90, (2003)
[36] Morris, J. F.; Boulay, F., Curvilinear flows of noncolloidal suspensions: the role of normal stresses, J. Rheol., 43, 1213-1237, (1999)
[37] Mullin, T., Mutations of steady cellular flows in the Taylor experiment, J. Fluid Mech., 121, 207-218, (1982)
[38] Mullin, T., Onset of time dependence in Taylor-Couette flow, Phys. Rev. A, 31, 1216-1218, (1985)
[39] Mullin, T.; Benjamin, T. B., Transition to oscillatory motion in the Taylor experiment, Nature, 288, 567-569, (1980)
[40] Mullin, T.; Heise, M.; Pfister, G., Onset of cellular motion in the Taylor-Couette flow, Phys. Rev. Fluids, 2, (2017)
[41] Nott, P. R.; Brady, J. F., Pressure-driven flow of suspensions: simulation and theory, J. Fluid Mech., 275, 157-199, (1994) · Zbl 0925.76835
[42] Park, K., Universal transition sequence in Taylor wavy-vortex flow, Phys. Rev. A, 29, 3458-3460, (1984)
[43] Rayleigh, Lord, On the dynamics of revolving fluids, Proc. R. Soc. Lond. A, 93, 148-153, (1916) · JFM 46.1249.01
[44] Saha, S.; Alam, M., Revisiting ignited-quenched transition and the non-Newtonian rheology of a sheared dilute gas – solid suspension, J. Fluid Mech., 833, 206-246, (2017) · Zbl 1419.76033
[45] Segre, G.; Silberberg, A. J., Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation, J. Fluid Mech., 14, 1, 136-157, (1962) · Zbl 0118.43203
[46] Synge, J. L., The stability of heterogeneous fluids, Trans. R. Soc. Can., 27, 3, 1-18, (1933) · JFM 59.1453.01
[47] Taylor, G. I., Stability of a viscous liquid contained between two rotating cylinders, Phil. Trans. R. Soc. Lond. A, 223, 289-343, (1923) · JFM 49.0607.01
[48] Taylor, G. I., Fluid friction between rotating cylinders. I. Torque measurements, Proc. R. Soc. Lond. A, 157, 546-564, (1936)
[49] Taylor, G. I., Fluid friction between rotating cylinders. II. Distribution of velocity between concentric cylinders when outer one is rotating and inner one is at rest, Proc. R. Soc. Lond. A, 157, 565-578, (1936)
[50] Tokgoz, S.; Elsinga, G. E.; Delfos, R.; Westerweel, J., Spatial resolution and dissipation rate estimation in Taylor-Couette flow for tomographic PIV, Exp. Fluids, 53, 3, 561-583, (2012)
[51] Vasseur, P.; Cox, R. G., The lateral migration of a spherical particle in two-dimensional shear flows, J. Fluid Mech., 78, 2, 385-413, (1976) · Zbl 0342.76039
[52] Wereley, S. T.; Lueptow, R. M., Spatio-temporal character of non-wavy and wavy Taylor-Couette flow, J. Fluid Mech., 364, 59-80, (1998) · Zbl 0948.76512
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.