×

Lift on a steady 2-D symmetric airfoil in viscous uniform shear flow. (English) Zbl 1419.76398

Summary: We present an investigation into the influence of upstream shear on the viscous flow around a steady two-dimensional (2-D) symmetric airfoil at zero angle of attack, and the corresponding loads. In this computational study, we consider the NACA 0012 airfoil at a chord Reynolds number \(1.2\times 10^4\) in an approach flow with uniform positive shear with non-dimensional shear rate varying in the range 0.0–1.0. Results show that the lift force is negative, in the opposite direction to the prediction from Tsien’s inviscid theory for lift generation in the presence of positive shear. A hypothesis is presented to explain the observed sign of the lift force on the basis of the asymmetry in boundary layer development on the upper and lower surfaces of the airfoil, which creates an effective airfoil shape with negative camber. The resulting scaling of the viscous effect with shear rate and Reynolds number is provided. The location of the leading edge stagnation point moves increasingly farther back along the airfoil’s upper surface with increased shear rate, a behaviour consistent with a negatively cambered airfoil. Furthermore, the symmetry in the location of the boundary layer separation point on the airfoil’s upper and lower surfaces in uniform flow is broken under the imposed shear, and the wake vortical structures exhibit more asymmetry with increasing shear rate.

MSC:

76G25 General aerodynamics and subsonic flows
76M20 Finite difference methods applied to problems in fluid mechanics

Keywords:

aerodynamics

Software:

FDL3DI

References:

[1] Alpert, P., Implicit filtering in conjunction with explicit filtering, J. Comput. Phys., 44, 212-219, (1981) · Zbl 0492.76054 · doi:10.1016/0021-9991(81)90047-4
[2] Beam, R.; Warming, R., An implicit factored scheme for the compressible Navier-Stokes equations, AIAA J., 16, 4, 393-402, (1978) · Zbl 0374.76025 · doi:10.2514/3.60901
[3] Currie, I. G., Fundamental Mechanics of Fluids, (1993), CRC Press, Taylor & Francis Group · Zbl 0353.76002
[4] Gaitonde, D. V. & Visbal, M. R.1998 High-order schemes for Navier-Stokes equations: algorithm and implementation into FDL3DI. Tech. Rep. Air Force Research Laboratory.
[5] Gaitonde, D. V. & Visbal, M. R.1999 Further development of a Navier-Stokes solution procedure based on higher-order formulas. AIAA Paper 99-16436.
[6] Hammer, P. R.2016 Computational study on the effect of Reynolds number and motion trajectory asymmetry on the aerodynamics of a pitching airfoil at low Reynolds number. PhD thesis, Michigan State University.
[7] Katz, J.; Plotkin, A., Low-Speed Aerodynamics, (2001), Cambridge University Press · Zbl 0976.76003 · doi:10.1017/CBO9780511810329
[8] Koochesfahani, M. M., Vortical patterns in the wake of an oscillating airfoil, AIAA J., 27, 9, 1200-1205, (1989) · doi:10.2514/3.10246
[9] Laitone, E., Wind tunnel tests of wings at Reynolds numbers below 70 000, Exp. Fluids, 23, 405-409, (1997) · doi:10.1007/s003480050128
[10] Lele, S., Compact finite difference scheme with spectral-like resolution, J. Comput. Phys., 103, 16-42, (1992) · Zbl 0759.65006 · doi:10.1016/0021-9991(92)90324-R
[11] Liu, H.; Kawachi, K., A numerical study of undulatory swimming, J. Comput. Phys., 155, 223-247, (1999) · Zbl 0958.76099 · doi:10.1006/jcph.1999.6341
[12] Olson, D. A.; Naguib, A. M.; Koochesfahani, M. M., Experiments on a steady low Reynolds number airfoil in a shear flow, Bull. Am. Phys. Soc., 61, 174, (2016)
[13] Payne, F.; Nelson, R., Aerodynamic characteristics of an airfoil in a nonuniform wind profile, J. Aircraft, 22, 1, 5-10, (1985) · doi:10.2514/3.45073
[14] Pulliam, T.; Chaussee, D., A diagonal form of an implicit approximate-factorizarion algorithm, J. Comput. Phys., 39, 347-363, (1981) · Zbl 0472.76068 · doi:10.1016/0021-9991(81)90156-X
[15] Sherer, S.; Scott, J., High-order compact finite difference methods on overset grids, J. Comput. Phys., 210, 459-496, (2005) · Zbl 1113.76068 · doi:10.1016/j.jcp.2005.04.017
[16] Sherer, S.; Visbal, M., Multi-resolution implicit large eddy simulations using a high-order overset grid approach, Intl J. Numer. Meth. Engng, 55, 455-482, (2007) · Zbl 1388.76105 · doi:10.1002/fld.1463
[17] Steger, J., Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries, AIAA J., 16, 7, 679-686, (1978) · Zbl 0383.76013 · doi:10.2514/3.7377
[18] Suhs, N., Rogers, S. & Dietz, W.2002 Pegasus 5: an automated pre-processor for overset-grid CFD. AIAA Paper 2002-3186.
[19] Tannehill, J.; Anderson, A.; Pletcher, R., Computational Fluid Mechanics and Heat Transfer, (1997), Taylor & Francis
[20] Tsien, H.-S., Symmetrical Joukowsky airfoils in shear flow, Q. Appl. Maths, 1, 2, 130-148, (1943) · Zbl 0061.44408 · doi:10.1090/qam/8537
[21] Vinokur, M., Conservation equations of gas dynamics in curvilinear coordinate system, J. Comput. Phys., 14, 105-125, (1974) · Zbl 0277.76061 · doi:10.1016/0021-9991(74)90008-4
[22] Visbal, M., Morgan, P. & Rizetta, D.2003 An implicit LES approach based on high-order compact differencing and filtering schemes (invited). AIAA Paper 2003-4098.
[23] Visbal, M. R.; Gaitonde, D. V., High-order-accurate methods of complex unsteady subsonic flows, AIAA J., 37, 10, 1231-1239, (1999) · doi:10.2514/2.591
[24] Visbal, M. R.; Gaitonde, D. V., On the use of higher-order finite-difference schemes on curvilinear and deforming meshes, J. Comput. Phys., 181, 155-185, (2002) · Zbl 1008.65062 · doi:10.1006/jcph.2002.7117
[25] Young, J.; Lai, J., Oscillation frequency and amplitude effects on the wake of a plunging airfoil, AIAA J., 42, 10, 2042-2052, (2004) · doi:10.2514/1.5070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.