×

A microstructure-based constitutive model for the pseudoelastic behavior of NiTi SMAs. (English) Zbl 1419.74200

Summary: Experiments showed that the pseudoelastic behavior of NiTi shape memory alloys (SMAs) subjected to pure tension and pure torsion is distinctly different, which can be attributed to the different deformation-induced-transformation microstructures. SEM observation shows uniformly distributed parallel texture on the surface of the NiTi SMA microtubes subjected to pure torsion, indicating alternatively arranged parallel lamellas of austenite and martensite phases. During pure tension, it can be observed that martensite initiate from the parent phase and grow to macroscopic bands, and, correspondingly, a typical stress drop can be observed in the tensile stress-strain curve. A microstructure-based constitutive model is proposed for the NiTi SMAs by three stages: (1) the constitutive relationships for the individual martensite phase and austenite phase, respectively; (2) the model for a representative volume element (RVE) composed of alternatively arranged parallel lamellas of austenite and martensite; and (3) the description for the NiTi SMAs by considering the materials as aggregates of numerous cells with different orientations and making use of Hill’s self-consistent scheme. The proposed model can satisfactorily describe the main characteristics of the pseudoelastic behavior of NiTi shape memory alloys under pure tension and pure torsion. The capability for the model to be applied to the pseudoelastic responses of NiTi SMAs under complex triaxial deformation is also discussed.

MSC:

74M25 Micromechanics of solids
74D99 Materials of strain-rate type and history type, other materials with memory (including elastic materials with viscous damping, various viscoelastic materials)
Full Text: DOI

References:

[1] Achenbach, M.; Atanackovic, T.; Muller, I.: A model for memory alloys in plane strains, Int. J. Solid struct. 22, No. 2, 171-193 (1986) · Zbl 0576.73033 · doi:10.1016/0020-7683(86)90006-5
[2] Auricchio, F.; Taylor, R. L.; Lubliner, J.: Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior, Comput. meth. Appl. mech. Eng. 146, No. 3 – 4, 281-312 (1997) · Zbl 0898.73019 · doi:10.1016/S0045-7825(96)01232-7
[3] Boyd, J. G.: Thermomechanical response of shape memory composites, J. intell. Mater. syst. Struct. 5, 333-346 (1994)
[4] Falk, F.: Model free-energy, mechanics, and thermodynamics of shape memory alloys, Acta metall. 23, No. 12, 1773-1780 (1980)
[5] Fan, J.; Peng, X.: A physically based constitutive description for nonproportional cyclic plasticity, J. eng. Mat. tech. 113, 254-262 (1991)
[6] Fischer, F. D.; Oberaigner, E. R.; Tanaka, K.: Micromechanical approach to constitutive equations for phase changing materials, Comput. mater. Sci. 9, No. 1 – 2, 56-63 (1997)
[7] Fung, P.; Sun, Q. P.: Experimental investigation on macroscopic domain formulation and evolution of polycrystalline niti microtubing under mechanical force, J. mech. Phys. solid 54, 1568-1603 (2006)
[8] Goo, B. C.; Lexcellent, C.: Micromechanics-based modeling of two-way memory effect of a single crystalline shape-memory alloy, Acta mater. 45, No. 2, 727-737 (1997)
[9] Graesser, E. J.; Cozzarelli, F. A.: Shape-memory alloys as new materials for a seismic isolation, J. eng. Mech. 117, No. 11, 2590-2608 (1991)
[10] Graesser, E. J.; Cozzarelli, F. A.: A proposed three-dimensional constitutive model for shape memory alloys, J. intell. Mater. syst. Struct., 578-589 (1994)
[11] Hill, R.: Continuum micro-mechanics of elastoplastic polycrystals, J. mech. Phys. solid 13, 89-101 (1965) · Zbl 0127.15302 · doi:10.1016/0022-5096(65)90023-2
[12] Iadicola, M. A.; Shaw, J. A.: Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy, Int. J. Plasticity 20, 577-605 (2004) · Zbl 1134.74345 · doi:10.1016/S0749-6419(03)00040-8
[13] Liang, C.; Rogers, C. A.: One-dimensional thermomechanical constitutive relations for shape memory materials, J. intell. Mater. syst. Struct. 1, 207-234 (1990)
[14] Müller, Ch.; Bruhns, O. T.: A thermodynamic finite-strain model for pseudoelastic shape memory alloys, Int. J. Plasticity 22, 1658-1682 (2006) · Zbl 1099.74050 · doi:10.1016/j.ijplas.2006.02.010
[15] Pan, H.; Thamburaja, P.; Chau, F. S.: Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning, Int. J. Plasticity 23, 711-732 (2007) · Zbl 1190.74026 · doi:10.1016/j.ijplas.2006.08.002
[16] Patoor, E.; Eberhardt, A.; Berveiller, M.: Thermomechanical behavior of shape memory alloys, Arch. mech. 40, 775-794 (1988)
[17] Peng, X.; Fan, J.: A numerical approach for nonclassical plasticity, Comput. struct. 47, No. 2, 313-320 (1993) · Zbl 0777.73067 · doi:10.1016/0045-7949(93)90382-N
[18] Peng, X.; Yang, Y.; Huang, S.: A comprehensive description for shape memory alloys with a two-phase constitutive model, Int. J. Solid struct. 38, No. 38 – 39, 6925-6940 (2000) · Zbl 1046.74039 · doi:10.1016/S0020-7683(00)00402-9
[19] Peng, X.; Fan, J.; Yang, Y.: A microstructure-based constitutive description for pearlitic steel with experimental verification, Int. J. Solid struct. 39, No. 2, 419-434 (2002) · Zbl 0988.74504 · doi:10.1016/S0020-7683(01)00223-2
[20] Peng, X.; Fan, J.; Zeng, J.: A microstructure-based description for the constitutive behavior of single pearlitic colony, Int. J. Solid struct. 39, No. 2, 435-448 (2002) · Zbl 1081.74506 · doi:10.1016/S0020-7683(01)00222-0
[21] Peng, X.; Li, H.; Chen, W.: A comprehensive description for smas with a two-phase mixture model incorporating conventional theory of plasticity, Smart mater. Struct. 14, 425-433 (2005)
[22] Shaw, J. A.: Simulations of localized thermo-mechanical behavior in a niti shape memory alloy, Int. J. Plasticity 16, 541-562 (2000) · Zbl 1043.74525 · doi:10.1016/S0749-6419(99)00075-3
[23] Shaw, J. A.; Kyriakides, S.: Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension, Int. J. Plasticity 13, No. 10, 837-871 (1998)
[24] Siredey, N.; Patoor, E.; Berveiller, M.; Eberhardt, A.: Constitutive equations for polycrystalline thermoelastic shape memory alloys. Part I. Intragranular interactions and behavior of the grain, Int. J. Solid struct. 36, No. 28, 4289-4315 (1999) · Zbl 0946.74041 · doi:10.1016/S0020-7683(98)00196-6
[25] Sun, Q. P.; Hwang, K. C.: Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloys, J. mech. Phys. solid 41, 1-33 (1993) · Zbl 0767.73063 · doi:10.1016/0022-5096(93)90061-J
[26] Sun, Q. P.; Li, Z. Q.: Phase transformation in superelastic niti polycrystalline micro-tubes under tension and torsion – from localization to homogeneous deformation, Int. J. Solid struct. 39, 3797-3809 (2002)
[27] Sun, Q. P.; Zhong, Z.: An inclusion theory for the propagation of martensite band in niti shape memory alloy wires under tension, Int. J. Plasticity 16, 1169-1187 (2000) · Zbl 1064.74638 · doi:10.1016/S0749-6419(00)00006-1
[28] Tanaka, K.: Thermal-mechanical sketch of shape memory effect – one-dimensional tensile behavior, Res. mech. 18, No. 3, 251-263 (1986)
[29] Tanaka, K.; Kobayashi, S.; Sato, Y.: Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys, Int. J. Plasticity 2, 59-72 (1986)
[30] Thamburaja, P.: Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys, J. mech. Phys. solid 53, 825-856 (2005) · Zbl 1120.74310 · doi:10.1016/j.jmps.2004.11.004
[31] Valanis, K. C.; Fan, J.: Endochronic analysis of cyclic elastoplastic strain fields in a notched plate, J. appl. Mech. 50, 789-793 (1983) · Zbl 0526.73087 · doi:10.1115/1.3167147
[32] Zhong, Z.; Sun, Q. P.; Tong, P.: On the elastic axisymmetric deformation of a rod containing a single cylindrical inclusion, Int. J. Solid struct. 37, 5943-5955 (2000) · Zbl 0989.74043 · doi:10.1016/S0020-7683(99)00269-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.