×

A study of the controlled motion of a four-wheeled mecanum platform. (English) Zbl 1419.70006

Summary: The object of the study is the mobile platform of the KUKA youBot robot equipped with four Mecanum wheels. The ideal conditions for the point contact of the wheels and the floor are considered. It is assumed that the rollers of each Mecanum wheel move without slipping and the center of the wheel, the center of the roller axis, and the point of contact of the roller with the floor are located on the same straight line. The dynamics of the system is described using Appel’s equations and taking into account the linear forces of viscous friction in the joints of the bodies. An algorithm for determination of the control forces is designed. Their structure is the same as that of the reactions of ideal constraints determined by the program motion of the point of the platform. The controlled dynamics of the system is studied using uniform circular motion of the platform point as an example: conditions for the existence and stability of steady rotations are found, conditions for the existence of stable-unstable stationary regimes and rotational motions of the platform are obtained. Within the framework of the theory of singular perturbations, an asymptotic analysis of the rotation of the platform is carried out.

MSC:

70F25 Nonholonomic systems related to the dynamics of a system of particles
70E55 Dynamics of multibody systems
70E60 Robot dynamics and control of rigid bodies
70Q05 Control of mechanical systems
70K70 Systems with slow and fast motions for nonlinear problems in mechanics
34D15 Singular perturbations of ordinary differential equations
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
37J60 Nonholonomic dynamical systems
37J20 Bifurcation problems for finite-dimensional Hamiltonian and Lagrangian systems

References:

[1] Adamov, B. I. and Kobrin, A. I., “Parametric Identification of the Mathematical Model of the Omnidirectional Mobile Robot KUKA youBot”, Mekhatronika, Avtomatizatsiya, Upravlenie, 19:4 (2018), 251-258 (Russian) · doi:10.17587/mau.19.251-258
[2] Adamov, B. I. and Orlov, I. V., “Control of a Mobile Manipulator in Cylindrical Coordinate System”, Vestn. Mosk. Energ. Inst., 2012, no. 1, 28-35 (Russian)
[3] Beghin H., Étude théorique des compas gyrostatiques Anschütz et Sperri, Thése, Faculté des sciences de Paris, Paris, 1922, 132 pp.
[4] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “An Omni-Wheel Vehicle on a Plane and a Sphere”, Nelin. Dinam., 7:4 (2011), 785-801 (Russian) · doi:10.20537/nd1104004
[5] Gantmacher, F. R., The Theory of Matrices, v. 1, 2, Chelsea, New York, 1959 · Zbl 0085.01001
[6] Golubev, Yu. F., Appel’s Function in the Dynamics of Rigid Body Systems, Preprint № 49, KIAM, Moscow, 2014 (Russian)
[7] Gradshtein, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th ed., Acad. Press, Amsterdam, 2007, 1200 pp. · Zbl 1208.65001
[8] Zobova, A. A., “Application of Laconic Forms of the Equations of Motion in the Dynamics of Nonholonomic Mobile Robots”, Nelin. Dinam., 7:4 (2011), 771-783 (Russian) · doi:10.20537/nd1104003
[9] Kilin, A. A. and Bobykin, A. D., “Control of a Vehicle with Omniwheels on a Plane”, Nelin. Dinam., 10:4 (2014), 473-481 (Russian) · Zbl 1353.70035 · doi:10.20537/nd1404007
[10] Kilin A. A., Karavaev Yu. L., Klekovkin A. V., “Kinematic Control of a High Manoeuvrable Mobile Spherical Robot with Internal Omni-Wheeled Platform”, Nelin. Dinam., 10:1 (2014), 113-126 (Russian) · Zbl 1310.93064 · doi:10.20537/nd1401008
[11] Kozlov, V. V., “Principles of Dynamics and Servo-Constraints”, Nelin. Dinam., 11:1 (2015), 169-178 (Russian) · Zbl 1378.70014 · doi:10.20537/nd1501009
[12] Kozlov, V. V., “The Dynamics of Systems with Servoconstraints: 1”, Regul. Chaotic Dyn., 20:3 (2015), 205-224 · Zbl 1353.70036 · doi:10.1134/S1560354715030016
[13] Kozlov, V. V., “The Dynamics of Systems with Servoconstraints: 2”, Regul. Chaotic Dyn., 20:4 (2015), 401-427 · Zbl 1353.70012 · doi:10.1134/S1560354715040012
[14] Markeev, A. P., Theoretical Mechanics, R&C Dynamics, Institute of Computer Science, Izhevsk, 2007, 592 pp. (Russian)
[15] Markeev, A. P., “On the Gauss Principle”, Collection of Articles on Theoretical Mechanics, v. 23, ed. A. N. Kolesnikov, Mosk. Gos. Univ., Moscow, 2000, 29-44 (Russian)
[16] Fundam. Prikl. Mat., 11:8 (2005), 29-80 (Russian) · Zbl 1151.93396 · doi:10.1007/s10958-007-0496-4
[17] Martynenko, Yu. G., Orlov, I. V., “Motion Control Software for Telescopic Manipulator on the Mobile Platform”, Vestn. Mosk. Energ. Inst., 2003, no. 5, 60-70 (Russian)
[18] Izv. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2007, no. 6, 142-149 (Russian) · Zbl 1294.93060 · doi:10.1134/S106423070706010X
[19] Prikl. Mat. Mekh., 74:4 (2010), 610-619 (Russian) · Zbl 1272.70047 · doi:10.1016/j.jappmathmech.2010.09.009
[20] Mukhametzyanov, I. A., “The Principle of Feedback on the Quasi-Accelerations for Unstressed Stabilization in Finite Time of Given Manifolds of Mechanical and Generalized Systems”, Vestn. RUDN. Mat. Inform. Fiz., 2014, no. 3, 107-114 (Russian)
[21] Izv. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2015, no. 1, 15-28 (Russia) · Zbl 1317.93136 · doi:10.1134/S1064230715010116
[22] Mukharlyamov, R. G. and Abramov, N. V., “Dynamic Control of Manipulator with Program Constraints”, Problems of Mechanics and Control: Nonlinear Dynamical Systems, v. 43, Perm State Univ., Perm, 2011, 90-102 (Russian)
[23] Neimark, Ju. I. and Fufaev, N. A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., 33, AMS, Providence, R.I., 1972, 518 pp. · Zbl 0245.70011
[24] Novozhilov, I. V., Fractional Analysis. Methods of Motion Decomposition, Birkhäuser, Basel, 1997, X+232 pp. · Zbl 0870.65058
[25] Tikhonov, A. N., “Systems of Differential Equations Containing Small Parameters in the Derivatives”, Mat. Sb. (N. S.), 31(73):3 (1952), 575-586 (Russian) · Zbl 0048.07101
[26] Adascalitei, F. and Doroftei, I., “Practical Applications for Mobile Robots Based on Mecanum Wheels: A Systematic Survey”, The Romanian Review Precision Mechanics, Optics & Mechatronics, 2011, no. 40, 21-29
[27] Gfrerrer, A., “Geometry and Kinematics of the Mecanum Wheel”, Comput. Aided Geom. Des., 25:9 (2008), 784-791 · Zbl 1172.70301 · doi:10.1016/j.cagd.2008.07.008
[28] Ilon, B. E., Wheels for a Course Stable Selfpropelling Vehicle Movable in Any Desired Direction on the Ground or Some Other Base: Patent Sweden, B60B 19/12 (20060101); B60b 019/00, REF/3876255, November 13, 1972
[29] Indivery, G., Paulus, J., and Ploge, P.-G., “Motion Control of Swedish Wheeled Mobile Robot in the Presence of Actuator Saturation”, RoboCup 2006: Robot Soccer World Cup X, Lecture Notes in Comput. Sci., 4434, eds. G. Lakemeyer, E. Sklar, D. G. Sorrenti, T. Takahashi, Springer, New York, 2007, 29-44
[30] Ivanov, A. P., “On the Control of a Robot Ball Using Two Omniwheels”, Regul. Chaotic Dyn., 20:4 (2015), 441-448 · Zbl 1358.70008 · doi:10.1134/S1560354715040036
[31] Li, X. and Zell, A., “Motion Control of an Omnidirectional Mobile Robot”, Informatics in Control, Automation and Robotics: Selected Papers from the International Conference on Informatics in Control, Automation and Robotics (2007): Part 2, Lecture Notes in Electrical Engineering, 24, eds. J. Filipe, J. A. Cetto, J. L. Ferrier, Springer, Berlin, 2009, 181-193 · Zbl 1188.93069 · doi:10.1007/978-3-540-85640-5_14
[32] Lin, L.-C. and Shih, H.-Y., “Modeling and Adaptive Control of an Omni-Mecanum-Wheeled Robot”, Intelligent Control and Automation, 4:2 (2013), 166-179 · doi:10.4236/ica.2013.42021
[33] Planitz, M., “Inconsistent Systems of Linear Equations”, Math. Gazette, 63:425 (1979), 181-185 · Zbl 0429.15005 · doi:10.2307/3617890
[34] Plumpton, J. J., Hayes, M. J. D., Langlois, R. G., and Burlton, B. V., “Atlas Motion Platform Mecanum Wheel Jacobian in the Velocity and Static Force Domains”, CCToMM Mechanisms, Machines, and Mechatronics Symposium, 2013, 10
[35] Purwin, O. and D’Andrea, R., “Trajectory Generation and Control for Four Wheeled Omnidirectional Vehicles”, Robot. Auton. Syst., 54:1 (2006), 13-22 · doi:10.1016/j.robot.2005.10.002
[36] Zimmermann, K., Zeidis, I., and Behn, C., Mechanics of Terrestrial Locomotion: With a Focus on Non-pedal Motion Systems, Springer, London, 2010, 292 pp. · Zbl 1217.70002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.