×

Gini covariance matrix and its affine equivariant version. (English) Zbl 1419.62129

Summary: We propose a new covariance matrix called Gini covariance matrix (GCM), which is a natural generalization of univariate Gini mean difference (GMD) to the multivariate case. The extension is based on the covariance representation of GMD by applying the multivariate spatial rank function. We study properties of GCM, especially in the elliptical distribution family. In order to gain the affine equivariance property for GCM, we utilize the transformation-retransformation (TR) technique and obtain an affine equivariant version GCM that turns out to be a symmetrized M-functional. The influence function of those two GCM’s are obtained and their estimation has been presented. Asymptotic results of estimators have been established. A closely related scatter Kotz functional and its estimator are also explored. Finally, asymptotical efficiency and finite sample efficiency of the TR version GCM are compared with those of sample covariance matrix, Tyler-M estimator and other scatter estimators under different distributions.

MSC:

62H10 Multivariate distribution of statistics
62H12 Estimation in multivariate analysis
62G20 Asymptotic properties of nonparametric inference

Software:

MNM; mnormt; ICSNP; fastM

References:

[1] Arslan O (2010) An alternative multivariate skew Laplace distribution: properties and estimation. Stat Pap 51:865-887 · Zbl 1247.60015 · doi:10.1007/s00362-008-0183-7
[2] Azzalini A, Genz A (2016) The R package ‘mnormt’: the multivariate normal and ‘t’ distributions (version 1.5-4). http://azzalini.stat.unipd.it/SW/Pkg-mnormt
[3] Carcea M, Serfling R (2015) A Gini autocovariance function for time series modeling. J Time Ser Anal 36:817-838 · Zbl 1327.62462 · doi:10.1111/jtsa.12130
[4] Chakraborty B, Chaudhuri P (1996) On a transformation and re-transformation technique for constructing an affine equivariant multivariate median. Proc Am Math Soc 124(8):2539-2547 · Zbl 0856.62046 · doi:10.1090/S0002-9939-96-03657-X
[5] Croux, C.; Ollila, E.; Oja, H.; Dodge, Y. (ed.), Sign and rank covariance matrices: statistical properties and application to principal components analysis, 257-271 (2002), Basel · Zbl 1145.62343 · doi:10.1007/978-3-0348-8201-9_22
[6] Dümbgen L (1998) On Tyler’s M-functional of scatter in high dimension. Ann Inst Stat Math 50:471-491 · Zbl 0912.62061 · doi:10.1023/A:1003573311481
[7] Dümbgen L, Nordhausen K, Schuhmacher H (2014) fastM: fast computation of multivariate M-estimators. R package version 0.0-2. https://CRAN.R-project.org/package=fastM
[8] Dümbgen L, Pauly M, Schweizer T (2015) M-functionals of multivariate scatter. Stat Surv 9:32-105 · Zbl 1309.62087 · doi:10.1214/15-SS109
[9] Dümbgen L, Nordhausen K, Schuhmacher H (2016) New algorithms for M-estimation of multivariate scatter and location. J Multivar Anal 144:200-217 · Zbl 1328.62334 · doi:10.1016/j.jmva.2015.11.009
[10] Fang KT, Anderson TW (1990) Statistical inference in elliptically contoured and related distributions. Allerton Press, New York · Zbl 0747.00016
[11] Gerstenberger C, Vogel D (2015) On the efficiency of Gini’s mean difference. Stat Methods Appl 24(4):569-596 · Zbl 1328.62299 · doi:10.1007/s10260-015-0315-x
[12] Gini C (1914) Reprinted: on the measurement of concentration and variability of characters (2005). Metron LXIII(1):3-38 · Zbl 1416.62035
[13] Hampel FR (1974) The influence curve and its role in robust estimation. J Am Stat Assoc 69:383-393 · Zbl 0305.62031 · doi:10.1080/01621459.1974.10482962
[14] Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WJ (1986) Robust statistics: the approach based on influence functions. Wiley, New York · Zbl 0593.62027
[15] Huber PJ (1967) The behavior of maximum likelihood estimates under nonstandard conditions. Proc Fifth Berkeley Symp Math Stat Probab 1:221-233 · Zbl 0212.21504
[16] Huber PJ, Ronchetti EM (2009) Robust statistics, 2nd edn. Wiley, New York · Zbl 1276.62022 · doi:10.1002/9780470434697
[17] Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New York · doi:10.1002/0471221317
[18] Koltchinskii VI (1997) M-estimation, convexity and quantiles. Ann Stat 25:435-477 · Zbl 0878.62037 · doi:10.1214/aos/1031833659
[19] Koshevoy G, Mosler K (1997) Multivariate Gini indices. J Multivar Anal 60:252-276 · Zbl 0873.62062 · doi:10.1006/jmva.1996.1655
[20] Koshevoy G, Möttönen J, Oja H (2003) Scatter matrix estimate based on the zonotope. Ann Stat 31:1439-1459 · Zbl 1046.62058 · doi:10.1214/aos/1065705114
[21] Kotz, S.; Patil, GP (ed.); Kotz, S. (ed.); Ord, JK (ed.), Multivariate distributions at a cross-road, No. 1 (1975), Dordrecht
[22] Maronna RA (1976) Robust M-estimators of multivariate location and scatter. Ann Stat 4:51-67 · Zbl 0322.62054 · doi:10.1214/aos/1176343347
[23] Möttönen J, Oja H, Tienari J (1997) On the efficiency of multivariate spatial sign and rank tests. Ann Stat 25:542-552 · Zbl 0873.62048 · doi:10.1214/aos/1031833663
[24] Nadarajah S (2003) The Kotz-type distribution with applications. Statistics 37:341-358 · Zbl 1037.62048 · doi:10.1080/0233188031000078060
[25] Nair U (1936) The standard error of Gini’s mean difference. Biometrika 28:428-436 · Zbl 0015.31102 · doi:10.1093/biomet/28.3-4.428
[26] Nordhausen K, Oja H (2011) Scatter matrices with independent block property and ISA. In: Proceedings of the 19th European signal processing conference (EUSIPCO 2011)
[27] Nordhausen K, Tyler DE (2015) A cautionary note on robust covariance plug-in methods. Biometrika 102:573-588 · Zbl 1452.62416 · doi:10.1093/biomet/asv022
[28] Nordhausen K, Sirkiä S, Oja H, Tyler DE (2015) ICSNP: tools for multivariate nonparametrics. R package version 1.1-0. https://CRAN.R-project.org/package=ICSNP
[29] Oja H (1983) Descriptive statistics for multivariate distributions. Stat Probab Lett 1:327-332 · Zbl 0517.62051 · doi:10.1016/0167-7152(83)90054-8
[30] Oja H (2010) Multivariate nonparametric methods with R: an approach based on spatial signs and ranks. Springer, New York · Zbl 1269.62036 · doi:10.1007/978-1-4419-0468-3
[31] Oja H, Sirkiä S, Eriksson J (2006) Scatter matrices and independent component analysis. Austrian J Stat 35:175-189
[32] Ollila E, Oja H, Croux C (2003) The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies. J Multivar Anal 87:328-355 · Zbl 1044.62063 · doi:10.1016/S0047-259X(03)00045-9
[33] Ollila E, Croux C, Oja H (2004) Influence function and asymptotic efficiency of the affine equivariant rank covariance matrix. Stat Sin 14:297-316 · Zbl 1035.62044
[34] Paindaveine D (2008) A canonical definition of shape. Stat Probab Lett 78:2240-2247 · Zbl 1283.62124 · doi:10.1016/j.spl.2008.01.094
[35] Roelant E, Van Aelst S (2007) An \[L_1\] L1-type estimator of multivariate location and shape. Stat Methods Appl 15:381-393 · Zbl 1187.62104 · doi:10.1007/s10260-006-0030-8
[36] Rousseeuw PJ, Croux C (1993) Alternatives to the median absolute deviation. J Am Stat Assoc 88:1273-1283 · Zbl 0792.62025 · doi:10.1080/01621459.1993.10476408
[37] Serfling R (1980) Approximation theorems of mathematical statistics. Wiley, New York · Zbl 0538.62002 · doi:10.1002/9780470316481
[38] Serfling R (2010) Equivariance and invariance properties of multivariate quantile and related functions, and the role of standardization. J Nonparametr Stat 22:915-936 · Zbl 1203.62103 · doi:10.1080/10485250903431710
[39] Serfling R, Xiao P (2007) A contribution to multivariate L-moments: L-comoment matrices. J Multivar Anal 98:1765-1781 · Zbl 1130.62053 · doi:10.1016/j.jmva.2007.01.008
[40] Sirkiä S, Taskinen S, Oja H (2007) Symmetrised M-estimators of multivariate scatter. J Multivar Anal 98:1611-1629 · Zbl 1122.62048 · doi:10.1016/j.jmva.2007.06.005
[41] Stamatis C, Steel H, Gordon S (1981) On the theory of elliptically contoured distributions. J Multivar Anal 11:368-385 · Zbl 0469.60019 · doi:10.1016/0047-259X(81)90082-8
[42] Taskinen S, Koch I, Oja H (2012) Robustifying principal component analysis with spatial sign vectors. Stat Probab Lett 82:765-774 · Zbl 1243.62084 · doi:10.1016/j.spl.2012.01.001
[43] Tyler D (1987) A distribution-free M-estimator of multivariate scatter. Ann Stat 15:234-251 · Zbl 0628.62053 · doi:10.1214/aos/1176350263
[44] Tyler D, Critchley F, Dümbgen L, Oja H (2009) Invariant coordinate selection. J R Stat Soc B 71:549-592 · Zbl 1250.62032 · doi:10.1111/j.1467-9868.2009.00706.x
[45] Visuri S, Koivunen V, Oja H (2000) Sign and rank covariance matrices. J Stat Plan Inference 91:557-575 · Zbl 0965.62049 · doi:10.1016/S0378-3758(00)00199-3
[46] Wang J (2009) A family of kurtosis orderings for multivariate distributions. J Multivar Anal 100:509-517 · Zbl 1154.62043 · doi:10.1016/j.jmva.2008.06.001
[47] Yitzhaki S (2003) Gini’s mean difference: a superior measure of variability for non-normal distribution. Metron Int J Stat 61:285-316 · Zbl 1416.60031
[48] Yitzhaki S, Schechtman E (2013) The Gini methodology—a primer on a statistical methodology. Springer, New York · Zbl 1292.62013 · doi:10.1007/978-1-4614-4720-7
[49] Yu K, Dang X, Chen Y (2015) Robustness of the affine equivariant scatter estimator based on the spatial rank covariance matrix. Commun Stat Theory Methods 44:914-932 · Zbl 1326.62119 · doi:10.1080/03610926.2012.755198
[50] Zografos K (2008) On Mardia’s and Song’s measures of kurtosis in elliptical distributions. J Multivar Anal 99:858-879 · Zbl 1133.62329 · doi:10.1016/j.jmva.2007.05.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.