×

Equivalence classes of staged trees. (English) Zbl 1419.62124

Summary: In this paper, we give a complete characterization of the statistical equivalence classes of CEGs and of staged trees. We are able to show that all graphical representations of the same model share a common polynomial description. Then, simple transformations on that polynomial enable us to traverse the corresponding class of graphs. We illustrate our results with a real analysis of the implicit dependence relationships within a previously studied dataset.

MSC:

62H05 Characterization and structure theory for multivariate probability distributions; copulas
05C05 Trees
05C90 Applications of graph theory

References:

[1] Andersson, S.A., Madigan, D. and Perlman, M.D. (1997). A characterization of Markov equivalence classes for acyclic digraphs. Ann. Statist. 25 505-541. · Zbl 0876.60095 · doi:10.1214/aos/1031833662
[2] Barclay, L.M., Hutton, J.L. and Smith, J.Q. (2013). Refining a Bayesian network using a chain event graph. Internat. J. Approx. Reason. 54 1300-1309. · Zbl 1316.68169 · doi:10.1016/j.ijar.2013.05.006
[3] Boutilier, C., Friedman, N., Goldszmidt, M. and Koller, D. (1996). Context-specific independence in Bayesian networks. In Uncertainty in Artificial Intelligence ( Portland , OR , 1996) 115-123. San Francisco, CA: Morgan Kaufmann.
[4] Coudouel, A., Hentschel, J.S. and Wodon, Q.T. (2002). Poverty measurement and analysis. In A Sourcebook for Poverty Reduction Strategies : Core Techniques and Cross-Cutting Issues (J. Klugman, ed.) 27-74. Washington: The World Bank.
[5] Cowell, R.G. and Smith, J.Q. (2014). Causal discovery through MAP selection of stratified Chain Event Graphs. Electron. J. Stat. 8 965-997. · Zbl 1349.62299 · doi:10.1214/14-EJS917
[6] Darwiche, A. (2003). A differential approach to inference in Bayesian networks. J. ACM 50 280-305. · Zbl 1325.68226 · doi:10.1145/765568.765570
[7] Drton, M., Sturmfels, B. and Sullivant, S. (2009). Lectures on Algebraic Statistics. Oberwolfach Seminars 39 . Basel: Birkhäuser. · Zbl 1166.13001
[8] Fergusson, D.M., Horwood, L.J. and Shannon, F.T. (1986). Social and family factors in childhood hospital admission. J. Epidemiol. Community Health 40 50-58.
[9] Freeman, G. and Smith, J.Q. (2011). Bayesian MAP model selection of Chain Event Graphs. J. Multivariate Anal. 102 1152-1165. · Zbl 1216.62039 · doi:10.1016/j.jmva.2011.03.008
[10] Geiger, D., Meek, C. and Sturmfels, B. (2006). On the toric algebra of graphical models. Ann. Statist. 34 1463-1492. · Zbl 1104.60007 · doi:10.1214/009053606000000263
[11] Görgen, C. (2017). An algebraic characterisation of staged trees: Their geometry and causal implications. Ph.D. thesis, Univ. Warwick, Department of Statistics.
[12] Görgen, C., Leonelli, M. and Smith, J.Q. (2015). A differential approach for staged trees. In Symbolic and Quantitative Approaches to Reasoning with Uncertainty , Proceedings. Lecture Notes in Artificial Intelligence 346-355. Springer. · Zbl 1465.62111
[13] Görgen, C. and Smith, J.Q. (2016). A differential approach to causality in staged trees. In Proceedings of the Eighth International Conference on Probabilistic Graphical Models. JMLR Workshop and Conference Proceedings 52 207-215.
[14] Heckerman, D. (1998). A tutorial on learning with Bayesian networks. In Learning in Graphical Models (M.I. Jordan, ed.). 301-354. Cambridge: MIT Press. · Zbl 0921.62029
[15] Lauritzen, S.L. (1996). Graphical Models. Oxford Statistical Science Series 17 . Oxford: Clarendon. · Zbl 0907.62001
[16] Lauritzen, S.L. and Spiegelhalter, D.J. (1988). Local computations with probabilities on graphical structures and their application to expert systems. J. Roy. Statist. Soc. Ser. B 50 157-224. With discussion. · Zbl 0684.68106
[17] Leonelli, M., Görgen, C. and Smith, J.Q. (2015). Sensitivity analysis, multilinearity and beyond. Preprint. Available at ArXiv:1512.02266 [cs.AI].
[18] Pistone, G., Riccomagno, E. and Wynn, H.P. (2001). Algebraic Statistics. Monographs on Statistics and Applied Probability 89 . Boca Raton, FL: Chapman & Hall. · Zbl 0960.62003
[19] Pistone, G., Riccomagno, E. and Wynn, H.P. (2001). Gröbner bases and factorisation in discrete probability and Bayes. Stat. Comput. 11 37-46.
[20] Shachter, R.D. (1988). Probabilistic inference and influence diagrams. Oper. Res. 36 589-605. · Zbl 0651.90043 · doi:10.1287/opre.36.4.589
[21] Shafer, G. (1996). The Art of Causal Conjecture . Cambridge: MIT Press. · Zbl 0874.60003
[22] Smith, J.Q. and Anderson, P.E. (2008). Conditional independence and chain event graphs. Artificial Intelligence 172 42-68. · Zbl 1182.68303 · doi:10.1016/j.artint.2007.05.004
[23] Smith, J.Q., Görgen, C. and Collazo, R.A. (2017). Chain Event Graphs . London: Chapman & Hall. In preparation. · Zbl 1391.05001
[24] Thwaites, P. (2013). Causal identifiability via Chain Event Graphs. Artificial Intelligence 195 291-315. · Zbl 1270.68300 · doi:10.1016/j.artint.2012.09.003
[25] Thwaites, P.A., Smith, J.Q. and Cowell, R.G. (2008). Propagation using Chain Event Graphs.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.