×

A model-based initial guess for estimating parameters in systems of ordinary differential equations. (English) Zbl 1419.62083

Summary: The inverse problem of parameter estimation from noisy observations is a major challenge in statistical inference for dynamical systems. Parameter estimation is usually carried out by optimizing some criterion function over the parameter space. Unless the optimization process starts with a good initial guess, the estimation may take an unreasonable amount of time, and may converge to local solutions, if at all. In this article, we introduce a novel technique for generating good initial guesses that can be used by any estimation method. We focus on the fairly general and often applied class of systems linear in the parameters. The new methodology bypasses numerical integration and can handle partially observed systems. We illustrate the performance of the method using simulations and apply it to real data.

MSC:

62G08 Nonparametric regression and quantile regression
34A55 Inverse problems involving ordinary differential equations

Software:

fminsearch
Full Text: DOI

References:

[1] Baccam, P., Beauchemin, C., Macken, C. A., Hayden, F. G., and Perelson, A. S. (2006). Kinetics of influenza a virus infection in humans. Journal of virology80, 7590-7599.
[2] Bellman, R. and Roth, R. S. (1971). The use of splines with unknown end points in the identification of systems. Journal of Mathematical Analysis and Applications34, 26-33. · Zbl 0217.11601
[3] Biegler, L. T., Damiano, J. J., and Blau, G. E. (1986). Nonlinear parameter estimation: A case study comparison. AIChE Journal32, 29-45.
[4] Brewer, D., Barenco, M., Callard, R., Hubank, M., and Stark, J. (2008). Fitting ordinary differential equations to short time course data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences366, 519-544. · Zbl 1153.37444
[5] Brunel, N. J. B. (2008). Parameter estimation of ode’s via nonparametric estimators. Electronic Journal of Statistics2, 1242-1267. · Zbl 1320.62063
[6] Campbell, D. and Lele, S. (2014). An anova test for parameter estimability using data cloning with application to statistical inference for dynamic systems. Computational Statistics & Data Analysis70, 257-267. · Zbl 1471.62035
[7] Dattner, I. and Klaassen, C. A. J. (2015). Optimal rate of direct estimators in systems of ordinary differential equations linear in functions of the parameters, p. 1-34.
[8] de Bazelaire, C., Siauve, N., Fournier, L., Frouin, F., Robert, P., Clement, O., de Kerviler, E., and Cuenod, C. A. (2005). Comprehensive model for simultaneous mri determination of perfusion and permeability using a blood‐pool agent in rats rhabdomyosarcoma. European Radiology15, 2497-2505.
[9] Earn, D. J., Rohani, P., Bolker, B. M., and Grenfell, B. T. (2000). A simple model for complex dynamical transitions in epidemics. Science287, 667-670.
[10] Edelstein‐Keshet, L. (2005). Mathematical models in biology. Classics in Applied Mathematics, volume 46. Society for Industrial and Applied Mathematics. · Zbl 1100.92001
[11] Fang, Y., Wu, H., and Zhu, L. X. (2011). A two‐stage estimation method for random coefficient differential equation models with application to longitudinal hiv dynamic data. Statistica Sinica21, 1145-1170. · Zbl 1534.62035
[12] Fine, P. E. and Clarkson, J. A. (1982). Measles in england and wales‐i: An analysis of factors underlying seasonal patterns. International Journal of Epidemiology11, 5-14.
[13] Finkenstädt, B. F. and Grenfell, B. T. (2000). Time series modelling of childhood diseases: A dynamical systems approach. Journal of the Royal Statistical Society: Series C (Applied Statistics)49, 187-205. · Zbl 0944.62100
[14] FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal1, 445-466.
[15] Gugushvili, S. and Klaassen, C. A. J. (2012). \( \sqrt{n} \)‐consistent parameter estimation for systems of ordinary differential equations: Bypassing numerical integration via smoothing. Bernoulli18, 1061-1098. · Zbl 1257.49033
[16] He, D., Ionides, E. L., and King, A. A. (2010). Plug‐and‐play inference for disease dynamics: Measles in large and small populations as a case study. Journal of the Royal Society Interface7, 271-283.
[17] Himmelblau, D., Jones, C., and Bischoff, K. (1967). Determination of rate constants for complex kinetics models. Industrial & Engineering Chemistry Fundamentals6, 539-543.
[18] Hockin, M. F., Jones, K. C., Everse, S. J., and Mann, K. G. (2002). A model for the stoichiometric regulation of blood coagulation. Journal of Biological Chemistry277, 18322-18333.
[19] Hooker, G. (2009). Forcing function diagnostics for nonlinear dynamics. Biometrics65, 928-936. · Zbl 1172.62046
[20] Hooker, G. and Biegler, L. (2007). Ipopt and neural dynamics: Tips, tricks and diagnostics. Technical report, Department of Biological Statistics and Computational Biology, Cornell University.
[21] Hooker, G., Ellner, S. P., Roditi, L. D. V., and Earn, D. J. (2011). Parameterizing state-space models for infectious disease dynamics by generalized profiling: Measles in ontario. Journal of The Royal Society Interface8, 961-974.
[22] Huppert, A., Barnea, O., Katriel, G., Yaari, R., Roll, U., and Stone, L. (2012). Modeling and statistical analysis of the spatio‐temporal patterns of seasonal influenza in israel. PloS ONE7, e45107.
[23] Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E. (1998). Convergence properties of the nelder-mead simplex method in low dimensions. SIAM Journal on Optimization9, 112-147. · Zbl 1005.90056
[24] Liang, H. and Wu, H. (2008). Parameter estimation for differential equation models using a framework of measurement error in regression models. Journal of the American Statistical Association103, 1570-1583. · Zbl 1286.62039
[25] Miao, H., Dykes, C., Demeter, L. M., Cavenaugh, J., Park, S. Y., Perelson, A. S., and Wu, H. (2008). Modeling and estimation of kinetic parameters and replicative fitness of hiv‐1 from flow‐cytometry‐based growth competition experiments. Bulletin of Mathematical Biology70, 1749-1771. · Zbl 1166.92029
[26] Miao, H., Dykes, C., Demeter, L. M., and Wu, H. (2009). Differential equation modeling of hiv viral fitness experiments: model identification, model selection, and multimodel inference. Biometrics65, 292-300. · Zbl 1159.62079
[27] Miao, H., Xia, X., Perelson, A. S., and Wu, H. (2011). On identifiability of nonlinear ode models and applications in viral dynamics. SIAM Review53, 3-39. · Zbl 1215.34015
[28] Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE50, 2061-2070.
[29] Nowak, M. and May, R. M. (2000). Virus dynamics: Mathematical principles of immunology and virology. Oxford: Oxford University Press on Demand. · Zbl 1101.92028
[30] Olinky, R., Huppert, A., and Stone, L. (2008). Seasonal dynamics and thresholds governing recurrent epidemics. Journal of mathematical biology56, 827-839. · Zbl 1141.92038
[31] Qi, X. and Zhao, H. (2010). Asymptotic efficiency and finite‐sample properties of the generalized profiling estimation of parameters in ordinary differential equations. The Annals of Statistics38, 435-481. · Zbl 1181.62156
[32] Ramsay, J. O., Hooker, G., Campbell, D., and Cao, J. (2007). Parameter estimation for differential equations: a generalized smoothing approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology)69, 741-796. · Zbl 07555374
[33] Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U., and Timmer, J. (2009). Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics25, 1923-1929.
[34] Stone, L., Olinky, R., and Huppert, A. (2007). Seasonal dynamics of recurrent epidemics. Nature446, 533-536.
[35] Tank, D., Regehr, W., and Delaney, K. (1995). A quantitative analysis of presynaptic calcium dynamics that contribute to short‐term enhancement. The Journal of Neuroscience15, 7940-7952.
[36] Tjoa, I. B. and Biegler, L. T. (1991). Simultaneous solution and optimization strategies for parameter estimation of differential‐algebraic equation systems. Industrial & Engineering Chemistry Research30, 376-385.
[37] Tsybakov, A. B. (2009). Introduction to nonparametric estimation. New York, NY: Springer. · Zbl 1176.62032
[38] Varah, J. (1982). A spline least squares method for numerical parameter estimation in differential equations. SIAM Journal on Scientific and Statistical Computing3, 28-46. · Zbl 0481.65050
[39] Voit, E. O. and Almeida, J. (2004). Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics20, 1670-1681.
[40] Vujačić, I., Dattner, I., González, J., and Wit, E. (2014). Time‐course window estimator for ordinary differential equations linear in the parameters. Statistics and Computing, DOI 10.1007/s11222‐014‐9486‐9. · Zbl 1331.62109
[41] Wilson, H. R. (1999). Spikes, decisions, and actions: The dynamical foundations of neuroscience. USA: Oxford University Press. · Zbl 1027.92008
[42] Wu, H., Zhu, H., Miao, H., and Perelson, A. S. (2008). Parameter identifiability and estimation of hiv/aids dynamic models. Bulletin of Mathematical Biology70, 785-799. · Zbl 1146.92021
[43] Xue, H., Miao, H., and Wu, H. (2010). Sieve estimation of constant and time‐varying coefficients in nonlinear ordinary differential equation models by considering both numerical error and measurement error. The Annals of Statistics38, 2351-2387. · Zbl 1203.62049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.