×

Estimating the density of a conditional expectation. (English) Zbl 1419.62077

Summary: In this paper, we analyze methods for estimating the density of a conditional expectation. We compare an estimator based on a straightforward application of kernel density estimation to a bias-corrected estimator that we propose. We prove convergence results for these estimators and show that the bias-corrected estimator has a superior rate of convergence. In a simulated test case, we show that the bias-corrected estimator performs better in a practical example with a realistic sample size.

MSC:

62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference

References:

[1] M. Broadie, Y. Du, and C. C. Moallemi. Efficient risk estimation via nested sequential simulation., Management Science , 57 :1172-1194, 2011. · Zbl 1218.91170 · doi:10.1287/mnsc.1110.1330
[2] R. J. Carroll and P. Hall. Optimal rates of convergence for deconvolving a density., Journal of the American Statistical Association , 83(404) :1184-1186, Dec 1988. · Zbl 0673.62033 · doi:10.2307/2290153
[3] A. Delaigle and A. Meister. Density estimation with heteroscedastic error., Bernoulli , 14(2):562-579, 2008. · Zbl 1155.62023 · doi:10.3150/08-BEJ121
[4] A. Delaigle, P. Hall, and A. Meister. On deconvolution with repeated measurements., Annals of Statistics , 36(2):665-685, 2008. · Zbl 1133.62026 · doi:10.1214/009053607000000884
[5] L. Devroye and G. Lúgosi., Combinatorial Methods in Density Estimation . Springer, New York, 2001. · Zbl 0964.62025
[6] B. Efron and R. J. Tibshirani., An Introduction to the Bootstrap . Chapman & Hall, New York, 1993. · Zbl 0835.62038
[7] V. A. Epanechnikov. Non-parametric estimation of a multivariate probability density., Theory of Probability and its Applications , 14(1):153-158, 1967.
[8] P. Glasserman. Performance continuity and differentiability in Monte Carlo optimization. In M. Abrams, P. Haigh, and J. Comfort, editors, Proceedings of the 1988 Winter Simulation Conference , pages 518-524, Piscataway, NJ, 1988. IEEE.
[9] M. B. Gordy and S. Juneja. Nested simulation in portfolio risk measurement., Management Science , 56 :1833-1848, 2010. · Zbl 1232.91622 · doi:10.1287/mnsc.1100.1213
[10] S. G. Henderson. Input model uncertainty: why do we care and what should we do about it? In S. E. Chick, P. J. Sánchez, D. J. Morrice, and D. Ferrin, editors, Proceedings of the 2003 Winter Simulation Conference , page To appear, Piscataway, NJ, 2003. IEEE.
[11] M. C. Jones and D. F. Signorini. A comparison of higher-order bias kernel density estimators., Journal of the American Statistical Association , 92(439) :1063-1073, September 1997. · Zbl 0888.62035 · doi:10.2307/2965571
[12] P. L’Ecuyer. A unified view of the IPA, SF and LR gradient estimation techniques., Management Science , 36 :1364-1383, 1990. · Zbl 0731.65130 · doi:10.1287/mnsc.36.11.1364
[13] P. L’Ecuyer. On the interchange of derivative and expectation for likelihood ratio derivative estimators., Management Science , 41:738-748, 1995. · Zbl 0844.62003 · doi:10.1287/mnsc.41.4.738
[14] S. H. Lee., Monte Carlo Computation of Conditional Expectation Quantiles . PhD thesis, Stanford University, Stanford, CA, 1998.
[15] S. H. Lee and P. W. Glynn. Computing the distribution function of a conditional expectation via monte carlo: discrete conditioning spaces., ACM Transactions on Modeling and Computer Simulation , 13(3):238-258, July 2003. · Zbl 1390.65005
[16] J. McIntyre and L. A. Stefanski. Density estimation with replicate heteroscedastic measurements., Annals of the Institute of Statistical Mathematics , 63:81-99, 2011. · Zbl 1432.62089 · doi:10.1007/s10463-009-0220-x
[17] P. Patil. A note on deconvolution density estimation., Statistics & Probability Letters , 29(1):79-84, 1996. · Zbl 0861.62027 · doi:10.1016/0167-7152(95)00158-1
[18] B. L. S. Prakasa Rao., Nonparametric Functional Estimation . Academic Press, New York, 1983. · Zbl 0542.62025
[19] W. Rudin., Real and Complex Analysis . McGraw-Hill, New York, 1987. · Zbl 0925.00005
[20] D. Ruppert. Empirical-bias bandwidths for local polynomial nonparametric regression and density estimation., Journal of the American Statistical Association , 92(439) :1049-1062, September 1997. · Zbl 1067.62531 · doi:10.2307/2965570
[21] A. E. Schulman., A Comparison of Local Bandwidth Selectors for Local Polynomial Regression . PhD thesis, Cornell University, Ithaca, NY, 1998. · Zbl 0917.68095
[22] J. Staudenmayer and D. Ruppert. Local polynomial regression and simulation-extrapolation., Journal of the Royal Statistical Society. Series B (Statistical Methodology) , 66(1):pp. 17-30, 2004. ISSN 13697412. URL . · Zbl 1062.62071 · doi:10.1046/j.1369-7412.2003.05282.x
[23] J. Staudenmayer, D. Ruppert, and J. P. Buonaccorsi. Density estimation in the presence of heteroscedastic measurement error., Journal of the American Statistical Association , 103(482):726-736, 2008. · Zbl 1471.62319 · doi:10.1198/016214508000000328
[24] S. G. Steckley., Estimating the density of a conditional expectation . PhD thesis, Cornell University, Ithaca, NY, 2005.
[25] S. G. Steckley and S. G. Henderson. A kernel approach to estimating the density of a conditional expectation. In S. E. Chick, P. J. Sánchez, D. J. Morrice, and D. Ferrin, editors, Proceedings of the 2003 Winter Simulation Conference , pages 383-391, Piscataway, NJ, 2003. IEEE.
[26] S. G. Steckley, S. G. Henderson, D. Ruppert, R. Yang, D. W. Apley, and J. Staum. Appendix (supplemental materials) for “Estimating the density of a conditional expectation”., Electronic Journal of Statistics , 2016, DOI: . · Zbl 1419.62077 · doi:10.1214/16-EJS1121
[27] L. A. Stefanski and J. R. Cook. Simulation-extrapolation: the measurement error jacknife., Journal of the American Statistical Association , 90(432) :1247-1256, Dec 1995. · Zbl 0868.62062 · doi:10.2307/2291515
[28] Y. Sun, D. W. Apley, and J. Staum. Efficient nested simulation for estimating the variance of a conditional expectation., Operations Research , 59:998 -1007, 2011. · Zbl 1234.62017 · doi:10.1287/opre.1110.0932
[29] M. P. Wand and M. C. Jones., Kernel Smoothing . Chapman & Hall, London, 1995.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.