×

\(C^*\)-simplicity of locally compact Powers groups. (English) Zbl 1419.46035

J. Reine Angew. Math. 748, 173-205 (2019); erratum ibid. 772, 223-225 (2021).
Summary: In this article we initiate research on locally compact \(C^*\)-simple groups. We first show that every \(C^*\)-simple group must be totally disconnected. Then we study \(C^*\)-algebras and von Neumann algebras associated with certain groups acting on trees. After formulating a locally compact analogue of Powers’ property, we prove that the reduced group \(C^*\)-algebra of such groups is simple. This is the first simplicity result for \(C^*\)-algebras of non-discrete groups and answers a question of P. de la Harpe [Bull. Lond. Math. Soc. 39, No. 1, 1–26 (2007; Zbl 1123.22004), Question 5]. We also consider group von Neumann algebras of certain non-discrete groups acting on trees. We prove factoriality, determine their type and show non-amenability. We end the article by giving natural examples of groups satisfying the hypotheses of our work.

MSC:

46L05 General theory of \(C^*\)-algebras
46L10 General theory of von Neumann algebras
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
20F99 Special aspects of infinite or finite groups

Citations:

Zbl 1123.22004

References:

[1] [1] S. Adams and W. Ballmann, Amenable isometry groups of Hadamard spaces, Math. Ann. 312 (1998), no. 1, 183-195. 10.1007/s002080050218AdamsS.BallmannW.Amenable isometry groups of Hadamard spacesMath. Ann.31219981183195 · Zbl 0913.53012
[2] [2] M. Bekka, M. Cowling and P. de la Harpe, Simplicity of the reduced C*{C^*}-algebra of PSL⁢(n,ℤ){PSL(n,\mathbb{Z})}, Int. Math. Res. Not. IMRN 1994 (1994), no. 7, 285-291. BekkaM.CowlingM.de la HarpeP.Simplicity of the reduced C*{C^*}-algebra of PSL⁢(n,ℤ){PSL(n,\mathbb{Z})}Int. Math. Res. Not. IMRN199419947285291 · Zbl 0827.22002
[3] [3] B. Bekka, P. de la Harpe and A. Valette, Kazhdan’s property (T), New Math. Monogr. 11, Cambridge University Press, Cambridge 2008. BekkaB.de la HarpeP.ValetteA.Kazhdan’s property (T)New Math. Monogr. 11Cambridge University PressCambridge2008 · Zbl 1146.22009
[4] [4] J. Bernstein, All reductive \(p\)-adic groups are of type I, Funct. Anal. Appl. 8 (1974), 91-93. 10.1007/BF01078592BernsteinJ.All reductive \(p\)-adic groups are of type IFunct. Anal. Appl.819749193 · Zbl 0298.43013
[5] [5] E. Breuillard, M. Kalantar, M. Kennedy and N. Ozawa, C*{C^*}-simplicity and the unique trace property for discrete groups, preprint (2014), http://arxiv.org/abs/1410.2518. <element-citation publication-type=”other“> BreuillardE.KalantarM.KennedyM.OzawaN. <mml:mi mathvariant=”normal“>C* <inline-graphic xlink.href=”graphic/j_crelle-2016-0026_eq_0434.png“ /> {C^*}-simplicity and the unique trace property for discrete groupsPreprint2014 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1410.2518
[6] [6] A. Connes, Une classification des facteurs de type III, Ann. Sci. Éc. Norm. Supér. (4) 6 (1973), 133-252. 10.24033/asens.1247ConnesA.Une classification des facteurs de type IIIAnn. Sci. Éc. Norm. Supér. (4)61973133252 · Zbl 0274.46050
[7] [7] A. Connes, Classification des facteurs, Operator algebras and applications (Kingston 1980), Proc. Sympos. Pure Math. 38. Part 2, American Mathematical Society, Providence (1982), 43-109. ConnesA.Classification des facteursOperator algebras and applicationsKingston 1980Proc. Sympos. Pure Math. 38. Part 2American Mathematical SocietyProvidence198243109 · Zbl 0503.46043
[8] [8] P. de la Harpe, Reduced C*{C^*}-algebras of discrete groups which are simple with a unique trace, Operator algebras and their connections with topology and ergodic theory (Buşteni 1983), Lecture Notes in Math. 1132, Springer, Berlin (1985), 230-253. de la HarpeP.Reduced C*{C^*}-algebras of discrete groups which are simple with a unique traceOperator algebras and their connections with topology and ergodic theoryBuşteni 1983Lecture Notes in Math. 1132SpringerBerlin1985230253 · Zbl 0575.46049
[9] [9] P. de la Harpe, On simplcity of reduced C*{C^*}-algebras of groups, Bull. Lond. Math. Soc. 39 (2007), 1-26. de la HarpeP.On simplcity of reduced C*{C^*}-algebras of groupsBull. Lond. Math. Soc.392007126 · Zbl 1123.22004
[10] [10] P. de la Harpe and J.-P. Préaux, C*{C^*}-simple groups: Amalgamated free products, HNN extensions, and fundamental groups of 3-manifolds, J. Topol. Anal. 3 (2011), no. 4, 451-489. de la HarpeP.PréauxJ.-P.C*{C^*}-simple groups: Amalgamated free products, HNN extensions, and fundamental groups of 3-manifoldsJ. Topol. Anal.320114451489 · Zbl 1243.57001
[11] [11] J. Dixmier, C*-algebras, North-Holland, Amsterdam 1977. DixmierJ.C*-algebrasNorth-HollandAmsterdam1977
[12] [12] J. M. Fell, The dual spaces of C*{C^*}-algebras, Trans. Amer. Math. Soc. 94 (1960), no. 3, 365-403. FellJ. M.The dual spaces of C*{C^*}-algebrasTrans. Amer. Math. Soc.9419603365403 · Zbl 0090.32803
[13] [13] A. Figà-Talamanca and C. Nebbia, Harmonic analysis and representation theory for groups acting on homogeneous trees, London Math. Soc. Lecture Note Ser. 162, Cambridge University Press, Cambridge 1991. Figà-TalamancaA.NebbiaC.Harmonic analysis and representation theory for groups acting on homogeneous treesLondon Math. Soc. Lecture Note Ser. 162Cambridge University PressCambridge1991 · Zbl 1154.22301
[14] [14] J. Glimm, Type I{{\rm I}}C*{C^*}-algebras, Ann. of Math. (2) 73 (1961), 572-612. GlimmJ.Type I{{\rm I}}C*{C^*}-algebrasAnn. of Math. (2)731961572612 · Zbl 0152.33002
[15] [15] U. Haagerup, A new look at C*{C^*}-simplicity and the unique trace property of a group, preprint (2015), http://arxiv.org/abs/1509.05880. <element-citation publication-type=”other“> HaagerupU.A new look at <mml:mi mathvariant=”normal“>C* <inline-graphic xlink.href=”graphic/j_crelle-2016-0026_eq_0434.png“ /> {C^*}-simplicity and the unique trace property of a groupPreprint2015 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1509.05880
[16] [16] Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1-111. 10.1007/BF02392813Harish-ChandraDiscrete series for semisimple Lie groups. II. Explicit determination of the charactersActa Math.11619661111 · Zbl 0199.20102
[17] [17] A. Ioana, S. Popa and S. Vaes, A class of superrigid group von Neumann algebras, Ann. of Math. (2) 178 (2013), 231-286. 10.4007/annals.2013.178.1.4http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000317262500004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3IoanaA.PopaS.VaesS.A class of superrigid group von Neumann algebrasAnn. of Math. (2)1782013231286 · Zbl 1295.46041
[18] [18] I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219-255. 10.1090/S0002-9947-1951-0042066-0KaplanskyI.The structure of certain operator algebrasTrans. Amer. Math. Soc.701951219255 · Zbl 0042.34901
[19] [19] M. Kennedy, Characterizations of C*{C^*}-simplicity, preprint (2015), http://arxiv.org/abs/1509.01870. <element-citation publication-type=”other“> KennedyM.Characterizations of <mml:mi mathvariant=”normal“>C* <inline-graphic xlink.href=”graphic/j_crelle-2016-0026_eq_0434.png“ /> {C^*}-simplicityPreprint2015 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1509.01870
[20] [20] J. Kustermans, KMS-weights on C*{C^*}-algebras, preprint (1997), https://arxiv.org/abs/funct-an/9704008. <element-citation publication-type=”other“> KustermansJ.KMS-weights on <mml:mi mathvariant=”normal“>C* <inline-graphic xlink.href=”graphic/j_crelle-2016-0026_eq_0434.png“ /> {C^*}-algebrasPreprint1997 <ext-link ext-link-type=”uri“ xlink.href=”>https://arxiv.org/abs/funct-an/9704008
[21] [21] J. Kustermans and S. Vaes, Weight theory for C*{C^*}-algebraic quantum groups, preprint (1999), http://arxiv.org/abs/math/9901063. <element-citation publication-type=”other“> KustermansJ.VaesS.Weight theory for <mml:mi mathvariant=”normal“>C* <inline-graphic xlink.href=”graphic/j_crelle-2016-0026_eq_0434.png“ /> {C^*}-algebraic quantum groupsPreprint1999 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/math/9901063
[22] [22] A. Le Boudec, C*{C^*}-simplicity and the amenable radical, preprint (2015), http://arxiv.org/abs/1507.03452. <element-citation publication-type=”other“> Le BoudecA. <mml:mi mathvariant=”normal“>C* <inline-graphic xlink.href=”graphic/j_crelle-2016-0026_eq_0434.png“ /> {C^*}-simplicity and the amenable radicalPreprint2015 <ext-link ext-link-type=”uri“ xlink.href=”>http://arxiv.org/abs/1507.03452
[23] [23] W. Lück, L2-invariants and their applications to geometry, group theory and spectral theory, Ergeb. Math. Grenzgeb. (3) 44, Springer, Berlin 2001. LückW.L2-invariants and their applications to geometry, group theory and spectral theoryErgeb. Math. Grenzgeb. (3) 44SpringerBerlin2001
[24] G. W. Mackey, Induced representations of locally compact groups I, Ann. of Math. (2) 55 (1952), no. 1, 101-139.; Mackey, G. W., Induced representations of locally compact groups I, Ann. of Math. (2), 55, 1, 101-139 (1952) · Zbl 0046.11601
[25] D. McDuff, Uncountably many II_1 factors, Ann. of Math. (2) 90 (1969), 372-377.; McDuff, D., Uncountably many II_1 factors, Ann. of Math. (2), 90, 372-377 (1969) · Zbl 0184.16902
[26] [26] S. Murakami, On the automorphisms of a real semi-simple Lie algebra, J. Math. Soc. Japan 4 (1952), no. 2, 103-133. 10.2969/jmsj/00420103MurakamiS.On the automorphisms of a real semi-simple Lie algebraJ. Math. Soc. Japan419522103133 · Zbl 0047.03501
[27] [27] R. T. Powers, Simplicity of the C*{C^*}-algebra associated with the free group on two generators, Duke Math. J. 42 (1975), 151-156. PowersR. T.Simplicity of the C*{C^*}-algebra associated with the free group on two generatorsDuke Math. J.421975151156 · Zbl 0342.46046
[28] J. Rosenberg, \( \text{C}^*\)-algebras and Mackey’s theory of group representations, C*-algebras: 1943-1993 (San Antonio 1993), Contemp.Math. 167, American Mathematical Society, Providence (1994), 151-181.; Rosenberg, J., \( \text{C}^*\)-algebras and Mackey’s theory of group representations, C*-algebras: 1943-1993, 151-181 (1994) · Zbl 0866.22005
[29] M. Takesaki, Theory of operator algebras II, Springer, Berlin 2003.; Takesaki, M., Theory of operator algebras II (2003) · Zbl 1059.46031
[30] K. Tzanev, Hecke \(\text{C}^*\)-algebras and amenability, J. Operator Theory 50 (2003), no. 1, 169-178.; Tzanev, K., Hecke \(\text{C}^*\)-algebras and amenability, J. Operator Theory, 50, 1, 169-178 (2003) · Zbl 1036.46054
[31] D. van Dantzig, Zur topologischen Algebra. III. Brouwersche und Cantorsche Gruppen, Compos. Math. 3 (1936), 408-426.; van Dantzig, D., Zur topologischen Algebra. III. Brouwersche und Cantorsche Gruppen, Compos. Math., 3, 408-426 (1936) · Zbl 0015.10202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.