×

Linear output-feedback-based semi-global stabilization for switched nonlinear time-delay systems. (English) Zbl 1418.93220

Summary: This paper focuses on the problem of semi-global output-feedback stabilization for a class of switched nonlinear time-delay systems in strict-feedback form. A switched state observer is first constructed, then switched linear output-feedback controllers for individual subsystems are designed. By skillfully constructing multiple Lyapunov-Krasovskii functionals and successfully solving several troublesome obstacles, such as time-varying delay and switching signals and nonlinearity in the design procedure, the switched linear output-feedback controllers designed can render the resulting closed-loop switched system semi-globally stabilizable under a class of switching signals with average dwell time. Furthermore, under some milder conditions on nonlinearities, the semi-global output-feedback stabilization problem for switched nonlinear time-delay systems is also studied. Simulation studies on two examples, which include a continuous stirred tank reactor, are carried out to demonstrate the effectiveness of the proposed approach.

MSC:

93D15 Stabilization of systems by feedback
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Ahmed, S.; Mazenc, F.; Özbay, H., Dynamic output feedback stabilization of switched linear systems with delay via a trajectory based approach, Automatica, 93, 92-97 (2018) · Zbl 1400.93255
[2] Cao, Y. Y.; Frank, P. M., Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach, IEEE Trans. Fuzzy Syst., 8, 2, 200-211 (2000)
[3] Chang, X. H.; Yang, G. H., New results on output feedback \(H_∞\) control for linear discrete-time systems, IEEE Trans. Autom. Control, 59, 5, 1355-1359 (2014) · Zbl 1360.93383
[4] Chen, H. B.; Shi, P.; Lim, C. C., Stability of neutral stochastic switched time delay systems: an average dwell time approach, Int. J. Robust Nonlinear Control, 27, 3, 512-532 (2017) · Zbl 1355.93203
[5] Chen, Y. G.; Fei, S. M.; Li, Y. M., Stabilization of neutral time-delay systems with actuator saturation via auxiliary time-delay feedback, Automatica, 52, 242-247 (2015) · Zbl 1309.93119
[6] Du, H. B.; Qian, C. J.; Li, S. H.; Frye, M. T., Global output feedback stabilization of a class of upper-triangular systems with input delay, Proceedings of the American Control Conference (2012), Fairmont Queen Elizabeth: Fairmont Queen Elizabeth Montréal, Canada
[7] Hua, C. C.; Guan, X. P.; Shi, P., Robust backstepping control for a class of time delayed systems, IEEE Trans. Autom. Control, 50, 6, 894-899 (2005) · Zbl 1365.93054
[8] Isidori, A., Nonlinear Control Systems (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0569.93034
[9] Khalil, H. K., Nonlinear Systems (2002), Prentice-Hall, Inc.: Prentice-Hall, Inc. New Jersey · Zbl 1003.34002
[10] Khalil, H. K.; Esfandiari, F., Semiglobal stabilization of a class of nonlinear systems using output feedback, IEEE Trans. Autom. Control, 38, 9, 1412-1415 (1993) · Zbl 0787.93079
[11] Li, Y.; Sun, Y.; Meng, F., New criteria for exponential stability of switched time-varying systems with delays and nonlinear disturbances, Nonlinear Anal. Hybrid Syst., 26, 284-291 (2017) · Zbl 1373.93271
[12] Liberzon, D., Switching in Systems and Control (2003), Birkhäuser: Birkhäuser Boston · Zbl 1036.93001
[13] Liu, J.; Lian, J.; Zhuang, Y., Output feedback \(L_1\) finite-time control of switched positive delayed systems with MDADT, Nonlinear Anal. Hybrid Syst., 15, 11-22 (2015) · Zbl 1301.93086
[14] Liu, J.; Liu, X. Z.; Xie, W. C., Input-to-state stability of impulsive and switching hybrid systems with time-delay, Automatica, 47, 5, 899-908 (2011) · Zbl 1233.93083
[15] Liu, L.; Yin, S.; Zhang, L. X.; Yin, X. Y.; Yan, H. C., Improved results on asymptotic stabilization for stochastic nonlinear time-delay systems with application to a chemical reactor system, IEEE Trans. Syst. Man Cybern. Syst., 47, 1, 195-204 (2017)
[16] Liu, X. W.; Zhong, S. M.; Zhao, Q. C., Dynamics of delayed switched nonlinear systems with applications to cascade systems, Automatica, 87, 251-257 (2018) · Zbl 1378.93109
[17] Long, L. J.; Zhao, J., Output-feedback stabilisation for a class of switched nonlinear systems with unknown control coefficients, Int. J. Control, 86, 3, 386-395 (2013) · Zbl 1278.93202
[18] Long, L. J.; Zhao, J., Decentralized adaptive fuzzy output-feedback control of switched large-scale nonlinear systems, IEEE Trans. Fuzzy Syst., 23, 5, 1844-1860 (2015)
[19] Long, L. J., Multiple Lyapunov functions-based small-gain theorems for switched interconnected nonlinear systems, IEEE Trans. Autom. Control, 62, 8, 3943-3958 (2017) · Zbl 1373.93299
[20] Ma, R. C.; Zhao, J., Backstepping design for global stabilization of switched nonlinear systems in lower triangular form under arbitrary switchings, Automatica, 46, 11, 1819-1823 (2010) · Zbl 1218.93075
[21] Meng, Z. Y.; Xia, W. G.; Johansson, K. H.; Hirche, S., Stability of positive switched linear systems: weak excitation and robustness to time-varying delay, IEEE Trans. Autom. Control, 62, 1, 399-405 (2017) · Zbl 1359.93352
[22] Min, H. F.; Xu, S. Y.; Ma, Q.; Zhang, B. Y.; Zhang, Z. Q., Composite-observer-based output-feedback control for nonlinear time-delay systems with input saturation and its application, IEEE Trans. Ind. Electron., 65, 7, 5856-5863 (2018)
[23] Pepe, P.; Fridman, E., On global exponential stability preservation under sampling for globally Lipschitz time-delay systems, Automatica, 82, 295-300 (2017) · Zbl 1372.93168
[24] Qian, C. J., Semi-global stabilization of a class of uncertain nonlinear systems by linear output feedback, IEEE Trans. Circuits Syst. II Express Briefs, 52, 4, 218-222 (2005)
[25] Qian, Y. B.; Xiang, Z. R.; Karimi, H. R., Disturbance tolerance and rejection of discrete switched systems with time-varying delay and saturating actuator, Nonlinear Anal. Hybrid Syst., 16, 81-92 (2015) · Zbl 1310.93043
[26] Ren, W.; Xiong, J. L., Vector Lyapunov function based input-to-state stability of stochastic impulsive switched time-delay systems, IEEE Trans. Autom. Control, 64, 2, 654-669 (2018) · Zbl 1482.93681
[27] Sun, X. M.; Zhao, J.; Hill, D. J., Stability and \(L_2\)-gain analysis for switched delay systems: a delay-dependent method, Automatica, 42, 10, 1769-1774 (2006) · Zbl 1114.93086
[28] Thanh, N. T.; Niamsup, P.; Phat, V. N., Finite-time stability of singular nonlinear switched time-delay systems: a singular value decomposition approach, J. Frankl. Inst., 354, 8, 3502-3518 (2017) · Zbl 1364.93742
[29] Wang, H. P.; Liu, X. P.; Shi, P., Observer-based fuzzy adaptive output-feedback control of stochastic nonlinear multiple time-delay systems, IEEE Trans. Cybern., 47, 9, 2568-2578 (2017)
[30] Wang, P.; Chai, L.; Fei, S. M.; Liu, G. Q., Semi-global stabilization for a class of nonlinear time-delay systems by linear output feedback, Int. Fed. Autom. Control, 48, 12, 185-190 (2015)
[31] Wang, Y. E.; Sun, X. M.; Mazenc, F., Stability of switched nonlinear systems with delay and disturbance, Automatica, 69, 78-86 (2016) · Zbl 1338.93307
[32] Wang, Y. E.; Sun, X. M.; Wang, Z.; Zhao, J., Construction of Lyapunov-Krasovskii functionals for switched nonlinear systems with input delay, Automatica, 50, 4, 1249-1253 (2014) · Zbl 1298.93299
[33] Xie, X. J.; Liu, L., Further results on output feedback stabilization for stochastic high-order nonlinear systems with time-varying delay, Automatica, 48, 10, 2577-2586 (2012) · Zbl 1271.93122
[34] Yan, X. G.; Spurgeon, S. K.; Edwards, C., Decentralised stabilisation for nonlinear time delay interconnected systems using static output feedback, Automatica, 49, 2, 633-641 (2013) · Zbl 1259.93016
[35] Yazdi, M. B.; Jahed-Motlagh, M. R., Stabilization of a CSTR with two arbitrarily switching modes using modal state feedback linearization, Chem. Eng. J., 155, 3, 838-843 (2009)
[36] Yazdi, M. B.; Jahed-Motlagh, M. R.; Attia, S. A.; Raisch, J., Modal exact linearization of a class of second-order switched nonlinear systems, Nonlinear Anal. Real World Appl., 11, 4, 2243-2252 (2010) · Zbl 1214.93032
[37] Yin, S.; Shi, P.; Yang, H. Y., Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with unmodeled dynamics, IEEE Trans. Cybern., 46, 8, 1926-1938 (2016)
[39] Yin, Y. F.; Zong, G. D.; Zhao, X. D., Improved stability criteria for switched positive linear systems with average dwell time switching, J. Frankl. Inst., 354, 8, 3472-3484 (2017) · Zbl 1364.93693
[40] Zhai, J. Y.; Du, H. B., Semi-global output feedback stabilization for a class of nonlinear systems using homogeneous domination approach, ISA Trans., 52, 231-241 (2013)
[41] Zhao, J.; Hill, D. J., On stability, \(L_2\)-gain and \(H_∞\) control for switched systems, Automatica, 44, 1220-1232 (2008) · Zbl 1283.93147
[42] Zhang, J. F.; Zhao, X. D.; Huang, J., Absolute exponential stability of switched nonlinear time-delay systems, J. Frankl. Inst., 353, 6, 1249-1267 (2016) · Zbl 1336.93134
[43] Zhao, X. D.; Shi, P.; Yin, Y. F.; Nguang, S. K., New results on stability of slowly switched systems: a multiple discontinuous Lyapunov function approach, IEEE Trans. Autom. Control, 62, 7, 3502-3509 (2017) · Zbl 1370.34108
[44] Zheng, J. Y.; Dong, J. G.; Xie, L. H., Stability of discrete-time positive switched linear systems with stable and marginally stable subsystems, Automatica, 91, 294-300 (2018) · Zbl 1387.93132
[45] Zhou, B.; Egorov, A. V., Razumikhin and Krasovskii stability theorems for time-varying time-delay systems, Automatica, 71, 281-291 (2016) · Zbl 1343.93061
[46] Zhou, B.; Yang, X., Global stabilization of feedforward nonlinear time-delay systems by bounded controls, Automatica, 88, 21-30 (2018) · Zbl 1379.93084
[47] Michiels, W.; Niculescu, S. I., Stability, Control And Computation for Time-Delay Systems: An Eigenvalue Based Approach (2014), SIAM: SIAM Philadelphia PA · Zbl 1305.93002
[48] Antsaklis, P. J.; Michel, A. N., A Linear Systems Primer (2007), Birkhäuser: Birkhäuser Boston · Zbl 1168.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.