×

Dynamics of an SIR epidemic model with stage structure and pulse vaccination. (English) Zbl 1418.92215

Summary: Pulse vaccination is an important strategy to eradicate an infectious disease. In this paper, we investigate an SIR epidemic model with stage structure and pulse vaccination. By using the discrete dynamical system determined by stroboscopic map, we obtain the conditions for the global asymptotical stability of the infection-free periodic solution of the studied system. The permanent conditions of the investigated system are also given. The results indicate that a large pulse vaccination rate is a sufficient condition to eradicate the disease. It provides a reliable tactic basis for preventing the epidemic outbreak.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology
34K20 Stability theory of functional-differential equations
34A37 Ordinary differential equations with impulses
34C60 Qualitative investigation and simulation of ordinary differential equation models
92D25 Population dynamics (general)

References:

[1] Kermack, WO, Mckendrick, AG: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115(772), 700-721 (1927) · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[2] Kermack, WO, Mckendrick, AG: Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proc. R. Soc. A 138(834), 55-83 (1932) · Zbl 0005.30501 · doi:10.1098/rspa.1932.0171
[3] Kermack, WO, Mckendrick, AG: Contributions to the mathematical theory of epidemics. III. Further studies of the problem of endemicity. Proc. R. Soc. A 141(843), 94-122 (1933) · Zbl 0007.31502 · doi:10.1098/rspa.1933.0106
[4] Kermack, WO, Mckendrick, AG: Contributions to the mathematical theory of epidemics IV. Analysis of experimental epidemics of the virus disease mouse ectromelia. J. Hyg. 37(2), 172-187 (1937)
[5] Shulgin, B, Stone, L, Agur, Z: Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol. 60(6), 1123-1148 (1998) · Zbl 0941.92026 · doi:10.1016/S0092-8240(98)90005-2
[6] d’Onofrio, A: On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Appl. Math. Lett. 18(7), 729-732 (2005) · Zbl 1064.92041 · doi:10.1016/j.aml.2004.05.012
[7] Gao, S, Teng, Z, Xie, D: Analysis of a delayed SIR epidemic model with pulse vaccination. Chaos Solitons Fractals 40(2), 1004-1011 (2009) · Zbl 1197.34123 · doi:10.1016/j.chaos.2007.08.056
[8] Lu, Z, Chi, X, Chen, L: The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Math. Comput. Model. 36(9), 1039-1057 (2002) · Zbl 1023.92026 · doi:10.1016/S0895-7177(02)00257-1
[9] Meng, X, Chen, L: The dynamics of a new SIR epidemic model concerning pulse vaccination strategy. Appl. Math. Comput. 197(2), 582-597 (2008) · Zbl 1131.92056
[10] Buonomo, B, d’Onofrio, A, Lacitignola, D: Global stability of an SIR epidemic model with information dependent vaccination. Math. Biosci. 216(1), 9-16 (2008) · Zbl 1152.92019 · doi:10.1016/j.mbs.2008.07.011
[11] Xu, R, Ma, Z: Global stability of a SIR epidemic model with nonlinear incidence rate and time delay. Nonlinear Anal., Real World Appl. 10(5), 3175-3189 (2009) · Zbl 1183.34131 · doi:10.1016/j.nonrwa.2008.10.013
[12] Zhang, Z, Suo, Y: Qualitative analysis of a SIR epidemic model with saturated treatment rate. J. Appl. Math. Comput. 34(1-2), 177-194 (2010) · Zbl 1211.34062 · doi:10.1007/s12190-009-0315-9
[13] Liu, L, Cai, W, Wu, Y: Global dynamics for an SIR patchy model with susceptibles dispersal. Adv. Differ. Equ. 2012, 131 (2012) · Zbl 1347.92096 · doi:10.1186/1687-1847-2012-131
[14] Yuan, X, Xue, Y, Liu, M: Global stability of an SIR model with two susceptible groups on complex networks. Chaos Solitons Fractals 59, 42-50 (2014) · Zbl 1348.92167 · doi:10.1016/j.chaos.2013.11.010
[15] Liu, L: A delayed SIR model with general nonlinear incidence rate. Adv. Differ. Equ. 2015, 329 (2015) · Zbl 1422.92153 · doi:10.1186/s13662-015-0619-z
[16] Jiao, J, Cai, S, Li, L: Dynamics of an SIR model with vertical transmission and impulsive dispersal. J. Appl. Math. Comput. (2015). doi:10.1007/s12190-015-0934-2 · Zbl 1350.92051 · doi:10.1007/s12190-015-0934-2
[17] Hethcote, HW, Three basic epidemiological models, 119-144 (1989), Berlin · doi:10.1007/978-3-642-61317-3_5
[18] Anderson, RM, May, RM: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)
[19] Agur, Z, Cojocaru, L, Mazor, G, Anderson, R, Danon, Y: Pulse mass measles vaccination across age cohorts. Proc. Natl. Acad. Sci. USA 90(24), 11698-11702 (1993) · doi:10.1073/pnas.90.24.11698
[20] Stone, L, Shulgin, B, Agur, Z: Theoretical examination of the pulse vaccination policy in the SIR epidemic model. Math. Comput. Model. 31(4), 207-215 (2000) · Zbl 1043.92527 · doi:10.1016/S0895-7177(00)00040-6
[21] Gao, S, Chen, L, Nieto, JJ, Torres, A: Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24(35), 6037-6045 (2006) · doi:10.1016/j.vaccine.2006.05.018
[22] Li, X, Wang, W: A discrete epidemic model with stage structure. Chaos Solitons Fractals 26(3), 947-958 (2005) · Zbl 1066.92045 · doi:10.1016/j.chaos.2005.01.063
[23] Xiao, Y, Chen, L: Analysis of a SIS epidemic model with stage structure and a delay. Commun. Nonlinear Sci. Numer. Simul. 6(1), 35-39 (2001) · Zbl 1040.34096 · doi:10.1016/S1007-5704(01)90026-7
[24] Wang, W, Chen, L: A predator prey system with stage-structure for predator. Comput. Math. Appl. 33(8), 83-91 (1997) · doi:10.1016/S0898-1221(97)00056-4
[25] Song, X, Chen, L: Optimal harvesting and stability for a two species competitive system with stage-structure. Math. Biosci. 170(2), 173-186 (2001) · Zbl 1028.34049 · doi:10.1016/S0025-5564(00)00068-7
[26] Xiao, Y, Chen, L: On an SIS epidemic model with stage-structure. J. Syst. Sci. Complex. 16(2), 275-288 (2003) · Zbl 1138.92369
[27] Aiello, WG, Freedman, HI: A time-delay model of single-species growth with stage structure. Math. Biosci. 101(2), 139-153 (1990) · Zbl 0719.92017 · doi:10.1016/0025-5564(90)90019-U
[28] Aiello, WG, Freedman, HI, Wu, J: Analysis of a model representing stage structured population growth with state-dependent time delay. SIAM J. Appl. Math. 52(3), 855-869 (1992) · Zbl 0760.92018 · doi:10.1137/0152048
[29] Liu, X: Impulsive stabilization and applications to population growth models. J. Math. 25(1), 381-395 (1995) · Zbl 0832.34039
[30] Lakshmikantham, V, Bainov, DD, Simeonov, PS: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989) · Zbl 0719.34002 · doi:10.1142/0906
[31] Bainov, DD, Simeonov, PS: Impulsive Differential Equations: Periodic Solutions and Applications. Longman, New York (1993) · Zbl 0815.34001
[32] Liu, X, Chen, L: Complex dynamics of Holling II Lotka-Volterra predator-prey system with impulsive perturbations on the predator. Chaos Solitons Fractals 16(2), 311-320 (2003) · Zbl 1085.34529 · doi:10.1016/S0960-0779(02)00408-3
[33] Jiao, J, Chen, L: Global attractivity of a stage-structure variable coefficients predator-prey system with time delay and impulsive perturbations on predators. Int. J. Biomath. 1(2), 197-208 (2008) · Zbl 1155.92355 · doi:10.1142/S1793524508000163
[34] Jiao, J, Pang, G, Chen, L, Luo, G: A delayed stage-structured predator-prey model with impulsive stocking on prey and continuous harvesting on predator. Appl. Math. Comput. 195(2), 316-325 (2008) · Zbl 1126.92052
[35] Jiao, J, Chen, L, Luo, G: An appropriate pest management SI model with biological and chemical control concern. Appl. Math. Comput. 196(1), 285-293 (2008) · Zbl 1130.92046
[36] Jiao, J, Cai, S, Chen, L: Analysis of a stage-structured predator-prey system with birth pulse and impulsive harvesting at different moments. Nonlinear Anal., Real World Appl. 12(4), 2232-2244 (2011) · Zbl 1220.34067 · doi:10.1016/j.nonrwa.2011.01.005
[37] Jury, EL: Inners and Stability of Dynamics System. Wiley, New York (1974) · Zbl 0307.93025
[38] Klausmeier, CA: Floquet theory: a useful tool for understanding nonequilibrium dynamics. Theor. Ecol. 1(3), 153-161 (2008) · doi:10.1007/s12080-008-0016-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.