×

An impulsively controlled three-species prey-predator model with stage structure and birth pulse for predator. (English) Zbl 1418.92098

Summary: We investigate the dynamic behaviors of a two-prey one-predator system with stage structure and birth pulse for predator. By using the Floquet theory of linear periodic impulsive equation and small amplitude perturbation method, we show that there exists a globally asymptotically stable two-prey eradication periodic solution when the impulsive period is less than some critical value. Further, we study the permanence of the investigated model. Our results provide valuable strategy for biological economics management. Numerical analysis is also inserted to illustrate the results.

MSC:

92D25 Population dynamics (general)
34A37 Ordinary differential equations with impulses

References:

[1] Kar, T. K.; Pahari, U. K., Modelling and analysis of a prey-predator system with stage-structure and harvesting, Nonlinear Analysis: Real World Applications, 8, 2, 601-609 (2007) · Zbl 1152.34374 · doi:10.1016/j.nonrwa.2006.01.004
[2] Wang, H.; Wang, W., The dynamical complexity of a Ivlev-type prey-predator system with impulsive effect, Chaos, Solitons & Fractals, 38, 4, 1168-1176 (2008) · Zbl 1152.34310 · doi:10.1016/j.chaos.2007.02.008
[3] Ling, L.; Wang, W. M., Dynamics of a Ivlev-type predator-prey system with constant rate harvesting, Chaos, Solitons & Fractals, 41, 4, 2139-2153 (2009) · Zbl 1198.34061 · doi:10.1016/j.chaos.2008.08.024
[4] Qin, W. J.; Liu, Z. J.; Chen, Y. P., Permanence and global stability of positive periodic solutions of a discrete competitive system, Discrete Dynamics in Nature and Society, 2009 (2009) · Zbl 1178.39027 · doi:10.1155/2009/830537
[5] Jiao, J. J.; Liu, Y. L., Stability and bifurcation analysis of a delayed Leslie-Gower predator-prey system with nonmonotonic functional response, Abstract and Applied Analysis, 2013 (2013) · Zbl 1276.34073 · doi:10.1155/2013/152459
[6] Terry, A. J., Impulsive adult culling of a tropical pest with a stage-structured life cycle, Nonlinear Analysis: Real World Applications, 11, 2, 645-664 (2010) · Zbl 1180.37131 · doi:10.1016/j.nonrwa.2009.01.005
[7] Wang, W.; Chen, L., A predator-prey system with stage-structure for predator, Computers & Mathematics with Applications, 33, 8, 83-91 (1997)
[8] Parrish, J. D.; Saila, S. B., Interspecific competition, predation and species diversity, Journal of Theoretical Biology, 27, 2, 207-220 (1970) · doi:10.1016/0022-5193(70)90138-4
[9] Pedigo, L. P., Entomology and Pest Management (1998), Englewood Cliffs, NJ, USA: Prentice-Hall, Englewood Cliffs, NJ, USA
[10] Takeuchi, Y.; Adachi, N., Existence and bifurcation of stable equilibrium in two-prey, one-predator communities, Bulletin of Mathematical Biology, 45, 6, 877-900 (1983) · Zbl 0524.92025 · doi:10.1016/s0092-8240(83)80067-6
[11] Liu, K. Y.; Meng, X. Z.; Chen, L. S., A new stage structured predator-prey Gomportz model with time delay and impulsive perturbations on the prey, Applied Mathematics and Computation, 196, 2, 705-719 (2008) · Zbl 1131.92064 · doi:10.1016/j.amc.2007.07.020
[12] Aiello, W. G.; Freedman, H. I., A time-delay model of single-species growth with stage structure, Mathematical Biosciences, 101, 2, 139-153 (1990) · Zbl 0719.92017 · doi:10.1016/0025-5564(90)90019-U
[13] Huang, C.-Y.; Li, Y.-J.; Huo, H.-F., The dynamics of a stage-structured predator-prey system with impulsive effect and Holling mass defence, Applied Mathematical Modelling, 36, 1, 87-96 (2012) · Zbl 1236.34106 · doi:10.1016/j.apm.2011.05.038
[14] Liang, J. H.; Tang, S. Y.; Cheke, R. A., An integrated pest management model with delayed responses to pesticide applications and its threshold dynamics, Nonlinear Analysis. Real World Applications, 13, 5, 2352-2374 (2012) · Zbl 1388.92032 · doi:10.1016/j.nonrwa.2012.02.003
[15] Tang, S.; Cheke, R. A., Models for integrated pest control and their biological implications, Mathematical Biosciences, 215, 1, 115-125 (2008) · Zbl 1156.92046 · doi:10.1016/j.mbs.2008.06.008
[16] Xiang, Z. Y.; Song, X. Y., Extinction and permanence of a two-prey two-predator system with impulsive on the predator, Chaos, Solitons & Fractals, 29, 5, 1121-1136 (2006) · Zbl 1142.34306 · doi:10.1016/j.chaos.2005.08.076
[17] Roberts, M. G.; Kao, R. R., The dynamics of an infectious disease in a population with birth pulses, Mathematical Biosciences, 149, 1, 23-36 (1998) · Zbl 0928.92027 · doi:10.1016/S0025-5564(97)10016-5
[18] Tang, S.; Chen, L., Density-dependent birth rate, birth pulses and their population dynamic consequences, Journal of Mathematical Biology, 44, 2, 185-199 (2002) · Zbl 0990.92033 · doi:10.1007/s002850100121
[19] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S., Theory of Impulsive Differential Equations (1989), Singapore: World Scientific, Singapore · Zbl 0719.34002
[20] May, R. M., Theoretical Ecology, Principles and Application (1981), Oxford, UK: Blackwell, Oxford, UK
[21] Lakshmikantham, V., Theory of Impulsive Differential Equations (1989), Singapore: World Scientific, Singapore · Zbl 0718.34011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.