×

Schur correlation functions on \(S^3 \times S^1\). (English) Zbl 1418.81078

Summary: The Schur limit of the superconformal index of four-dimensional \( \mathcal{N}=2 \) superconformal field theories has been shown to equal the supercharacter of the vacuum module of their associated chiral algebra. Applying localization techniques to the theory suitably put on \(S^3 \times S^1\), we obtain a direct derivation of this fact. We also show that the localization computation can be extended to calculate correlation functions of a subset of local operators, namely of the so-called Schur operators. Such correlators correspond to insertions of chiral algebra fields in the trace-formula computing the supercharacter. As a by-product of our analysis, we show that the standard lore in the localization literature stating that only off-shell supersymmetrically closed observables are amenable to localization, is incomplete, and we demonstrate how insertions of fermionic operators can be incorporated in the computation.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics

References:

[1] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite chiral symmetry in four dimensions, Commun. Math. Phys.336 (2015) 1359 [arXiv:1312.5344] [INSPIRE]. · Zbl 1320.81076 · doi:10.1007/s00220-014-2272-x
[2] C. Beem, L. Rastelli and B.C. van Rees, W symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE]. · Zbl 1397.81290 · doi:10.1007/JHEP05(2015)017
[3] S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, Exact correlators of BPS operators from the 3d superconformal bootstrap, JHEP03 (2015) 130 [arXiv:1412.0334] [INSPIRE]. · Zbl 1388.81711 · doi:10.1007/JHEP03(2015)130
[4] C. Beem, W. Peelaers and L. Rastelli, Deformation quantization and superconformal symmetry in three dimensions, Commun. Math. Phys.354 (2017) 345 [arXiv:1601.05378] [INSPIRE]. · Zbl 1375.81227 · doi:10.1007/s00220-017-2845-6
[5] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge theories and Macdonald polynomials, Commun. Math. Phys.319 (2013) 147 [arXiv:1110.3740] [INSPIRE]. · Zbl 1268.81114 · doi:10.1007/s00220-012-1607-8
[6] C. Beem, W. Peelaers, L. Rastelli and B.C. van Rees, Chiral algebras of class S, JHEP05 (2015) 020 [arXiv:1408.6522] [INSPIRE]. · Zbl 1388.81766 · doi:10.1007/JHEP05(2015)020
[7] M. Lemos and W. Peelaers, Chiral algebras for Trinion theories, JHEP02 (2015) 113 [arXiv:1411.3252] [INSPIRE]. · Zbl 1387.81256 · doi:10.1007/JHEP02(2015)113
[8] T. Nishinaka and Y. Tachikawa, On 4d rank-one N = 3 superconformal field theories, JHEP09 (2016) 116 [arXiv:1602.01503] [INSPIRE]. · Zbl 1390.81217 · doi:10.1007/JHEP09(2016)116
[9] F. Bonetti, C. Meneghelli and L. Rastelli, VOAs labelled by complex reflection groups and 4d SCFTs, JHEP05 (2019) 155 [arXiv:1810.03612] [INSPIRE]. · doi:10.1007/JHEP05(2019)155
[10] T. Arakawa, Chiral algebras of classS \[\mathcal{S}\] and Moore-Tachikawa symplectic varieties, arXiv:1811.01577 [INSPIRE].
[11] C. Cordova and S.-H. Shao, Schur indices, BPS particles and Argyres-Douglas theories, JHEP01 (2016) 040 [arXiv:1506.00265] [INSPIRE]. · Zbl 1388.81116 · doi:10.1007/JHEP01(2016)040
[12] D. Xie, W. Yan and S.-T. Yau, Chiral algebra of Argyres-Douglas theory from M5 brane, arXiv:1604.02155 [INSPIRE].
[13] J. Song, D. Xie and W. Yan, Vertex operator algebras of Argyres-Douglas theories from M5-branes, JHEP12 (2017) 123 [arXiv:1706.01607] [INSPIRE]. · Zbl 1383.81170 · doi:10.1007/JHEP12(2017)123
[14] M. Buican, Z. Laczko and T. Nishinaka, N = 2 S-duality revisited, JHEP09 (2017) 087 [arXiv:1706.03797] [INSPIRE]. · Zbl 1382.81172 · doi:10.1007/JHEP09(2017)087
[15] J. Choi and T. Nishinaka, On the chiral algebra of Argyres-Douglas theories and S-duality, JHEP04 (2018) 004 [arXiv:1711.07941] [INSPIRE]. · Zbl 1390.81499 · doi:10.1007/JHEP04(2018)004
[16] T. Creutzig, Logarithmic W-algebras and Argyres-Douglas theories at higher rank, JHEP11 (2018) 188 [arXiv:1809.01725] [INSPIRE]. · Zbl 1405.81122 · doi:10.1007/JHEP11(2018)188
[17] D. Xie and W. Yan, W algebra, cosets and VOAs for 4d N = 2 SCFT from M5 branes, arXiv:1902.02838 [INSPIRE].
[18] M. Buican and T. Nishinaka, On the superconformal index of Argyres-Douglas theories, J. Phys.A 49 (2016) 015401 [arXiv:1505.05884] [INSPIRE]. · Zbl 1342.81264
[19] P. Liendo, I. Ramirez and J. Seo, Stress-tensor OPE in N = 2 superconformal theories, JHEP02 (2016) 019 [arXiv:1509.00033] [INSPIRE]. · Zbl 1388.81682 · doi:10.1007/JHEP02(2016)019
[20] S. Cecotti, J. Song, C. Vafa and W. Yan, Superconformal index, BPS monodromy and chiral algebras, JHEP11 (2017) 013 [arXiv:1511.01516] [INSPIRE]. · Zbl 1383.81192 · doi:10.1007/JHEP11(2017)013
[21] M. Lemos and P. Liendo, N = 2 central charge bounds from 2d chiral algebras, JHEP04 (2016) 004 [arXiv:1511.07449] [INSPIRE]. · Zbl 1388.81057
[22] J. Song, Macdonald index and chiral algebra, JHEP08 (2017) 044 [arXiv:1612.08956] [INSPIRE]. · Zbl 1381.81123 · doi:10.1007/JHEP08(2017)044
[23] M. Buican and T. Nishinaka, Conformal manifolds in four dimensions and chiral algebras, J. Phys.A 49 (2016) 465401 [arXiv:1603.00887] [INSPIRE]. · Zbl 1353.81105
[24] L. Fredrickson, D. Pei, W. Yan and K. Ye, Argyres-Douglas theories, chiral algebras and wild Hitchin characters, JHEP01 (2018) 150 [arXiv:1701.08782] [INSPIRE]. · Zbl 1384.81099 · doi:10.1007/JHEP01(2018)150
[25] C. Beem and L. Rastelli, Vertex operator algebras, Higgs branches and modular differential equations, JHEP08 (2018) 114 [arXiv:1707.07679] [INSPIRE]. · Zbl 1396.81191 · doi:10.1007/JHEP08(2018)114
[26] C. Beem, Flavor symmetries and unitarity bounds in N = 2 SCFTs, Phys. Rev. Lett.122 (2019) 241603 [arXiv:1812.06099] [INSPIRE]. · doi:10.1103/PhysRevLett.122.241603
[27] E. Witten, Topological quantum field theory, Commun. Math. Phys.117 (1988) 353 [INSPIRE]. · Zbl 0656.53078 · doi:10.1007/BF01223371
[28] E. Witten, Mirror manifolds and topological field theory, hep-th/9112056 [INSPIRE]. · Zbl 0834.58013
[29] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71 [arXiv:0712.2824] [INSPIRE]. · Zbl 1257.81056 · doi:10.1007/s00220-012-1485-0
[30] V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, JHEP12 (2012) 067 [arXiv:0906.0638] [INSPIRE]. · Zbl 1397.81393 · doi:10.1007/JHEP12(2012)067
[31] M. Dedushenko, S.S. Pufu and R. Yacoby, A one-dimensional theory for Higgs branch operators, JHEP03 (2018) 138 [arXiv:1610.00740] [INSPIRE]. · Zbl 1388.81803 · doi:10.1007/JHEP03(2018)138
[32] M. Dedushenko, Y. Fan, S.S. Pufu and R. Yacoby, Coulomb branch operators and mirror symmetry in three dimensions, JHEP04 (2018) 037 [arXiv:1712.09384] [INSPIRE]. · Zbl 1390.81502 · doi:10.1007/JHEP04(2018)037
[33] F. Bonetti and L. Rastelli, Supersymmetric localization in AdS5and the protected chiral algebra, JHEP08 (2018) 098 [arXiv:1612.06514] [INSPIRE]. · Zbl 1396.81166 · doi:10.1007/JHEP08(2018)098
[34] Y. Pan and W. Peelaers, Chiral algebras, localization and surface defects, JHEP02 (2018) 138 [arXiv:1710.04306] [INSPIRE]. · Zbl 1387.81356 · doi:10.1007/JHEP02(2018)138
[35] M. Mezei, S.S. Pufu and Y. Wang, Chern-Simons theory from M5-branes and calibrated M2-branes, arXiv:1812.07572 [INSPIRE]. · Zbl 1421.81098
[36] M. Dedushenko, Y. Fan, S.S. Pufu and R. Yacoby, Coulomb branch quantization and Abelianized monopole bubbling, arXiv:1812.08788 [INSPIRE]. · Zbl 1427.81165
[37] E. Witten, Constraints on supersymmetry breaking, Nucl. Phys.B 202 (1982) 253 [INSPIRE]. · doi:10.1016/0550-3213(82)90071-2
[38] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys.275 (2007) 209 [hep-th/0510251] [INSPIRE]. · Zbl 1122.81070 · doi:10.1007/s00220-007-0258-7
[39] G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP06 (2011) 114 [arXiv:1105.0689] [INSPIRE]. · Zbl 1298.81145 · doi:10.1007/JHEP06(2011)114
[40] N. Hama and K. Hosomichi, Seiberg-Witten theories on ellipsoids, JHEP09 (2012) 033 [arXiv:1206.6359] [INSPIRE]. · Zbl 1397.81147 · doi:10.1007/JHEP09(2012)033
[41] V. Pestun, Localization for N = 2 supersymmetric gauge theories in four dimensions, in New dualities of supersymmetric gauge theories, J. Teschner ed., Springer, Cham, Switzerland (2016), pg. 159 [arXiv:1412.7134] [INSPIRE]. · Zbl 1334.81071
[42] W. Peelaers, Higgs branch localization of N = 1 theories on S3 × S1, JHEP08 (2014) 060 [arXiv:1403.2711] [INSPIRE]. · doi:10.1007/JHEP08(2014)060
[43] S. Nawata, Localization of N = 4 superconformal field theory on S1 × S3and index, JHEP11 (2011) 144 [arXiv:1104.4470] [INSPIRE]. · Zbl 1306.81263 · doi:10.1007/JHEP11(2011)144
[44] V. Pestun et al., Localization techniques in quantum field theories, J. Phys.A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE]. · Zbl 1378.00123
[45] F. Benini and S. Cremonesi, Partition functions of N = (2, 2) gauge theories on S2and vortices, Commun. Math. Phys.334 (2015) 1483 [arXiv:1206.2356] [INSPIRE]. · Zbl 1308.81131 · doi:10.1007/s00220-014-2112-z
[46] N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact results in D = 2 supersymmetric gauge theories, JHEP05 (2013) 093 [arXiv:1206.2606] [INSPIRE]. · Zbl 1342.81573 · doi:10.1007/JHEP05(2013)093
[47] M. Fujitsuka, M. Honda and Y. Yoshida, Higgs branch localization of 3d N = 2 theories, PTEP2014 (2014) 123B02 [arXiv:1312.3627] [INSPIRE]. · Zbl 1331.81191
[48] F. Benini and W. Peelaers, Higgs branch localization in three dimensions, JHEP05 (2014) 030 [arXiv:1312.6078] [INSPIRE]. · doi:10.1007/JHEP05(2014)030
[49] Y. Pan, 5d Higgs branch localization, Seiberg-Witten equations and contact geometry, JHEP01 (2015) 145 [arXiv:1406.5236] [INSPIRE]. · Zbl 1388.81879 · doi:10.1007/JHEP01(2015)145
[50] H.-Y. Chen and T.-H. Tsai, On Higgs branch localization of Seiberg-Witten theories on an ellipsoid, PTEP2016 (2016) 013B09 [arXiv:1506.04390] [INSPIRE]. · Zbl 1361.81110
[51] Y. Pan and W. Peelaers, Ellipsoid partition function from Seiberg-Witten monopoles, JHEP10 (2015) 183 [arXiv:1508.07329] [INSPIRE]. · Zbl 1390.81715 · doi:10.1007/JHEP10(2015)183
[52] F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of 2d N = 2 gauge theories, Commun. Math. Phys.333 (2015) 1241 [arXiv:1308.4896] [INSPIRE]. · Zbl 1321.81059 · doi:10.1007/s00220-014-2210-y
[53] G. Mason, M.P. Tuite and A. Zuevsky, Torus n-point functions for R-graded vertex operator superalgebras and continuous fermion orbifolds, Commun. Math. Phys.283 (2008) 305 [arXiv:0708.0640] [INSPIRE]. · Zbl 1211.17026 · doi:10.1007/s00220-008-0510-9
[54] N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP05 (2011) 014 [arXiv:1102.4716] [INSPIRE]. · Zbl 1296.81061 · doi:10.1007/JHEP05(2011)014
[55] C. Beem, W. Peelaers and L. Rastelli, unpublished.
[56] C. Cordova, D. Gaiotto and S.-H. Shao, Infrared computations of defect Schur indices, JHEP11 (2016) 106 [arXiv:1606.08429] [INSPIRE]. · Zbl 1390.81583 · doi:10.1007/JHEP11(2016)106
[57] C. Cordova, D. Gaiotto and S.-H. Shao, Surface defects and chiral algebras, JHEP05 (2017) 140 [arXiv:1704.01955] [INSPIRE]. · Zbl 1380.81393 · doi:10.1007/JHEP05(2017)140
[58] A. Neitzke and F. Yan, Line defect Schur indices, Verlinde algebras and U(1)rfixed points, JHEP11 (2017) 035 [arXiv:1708.05323] [INSPIRE]. · Zbl 1383.81307 · doi:10.1007/JHEP11(2017)035
[59] T. Nishinaka, S. Sasa and R.-D. Zhu, On the correspondence between surface operators in Argyres-Douglas theories and modules of chiral algebra, JHEP03 (2019) 091 [arXiv:1811.11772] [INSPIRE]. · Zbl 1414.81248 · doi:10.1007/JHEP03(2019)091
[60] T. Arakawa and K. Kawasetsu, Quasi-lisse vertex algebras and modular linear differential equations, arXiv:1610.05865 [INSPIRE]. · Zbl 1459.17046
[61] C. Beem and W. Peelaers, unpublished.
[62] J.H. Bruinier, G. van der Geer, G. Harder and D. Zagier, The 1-2-3 of modular forms: lectures at a summer school in Nordfjordeid, Norway, Springer, Berlin Heidelberg, Germany (2008). · Zbl 1197.11047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.