×

Principal component analysis in an asymmetric norm. (English) Zbl 1418.62249

J. Multivariate Anal. 171, 1-21 (2019); corrigendum ibid. 177, Article ID 104564, 1 p. (2020).
The generalization of the PCA is proposed for quantiles and expectiles. Under the elliptically symmetric distributions it turns to the convential PCA. The proposed approach is suitable to study extremes of the multivariate data. Experiments with weather datasets illustrate the efficiency of the proposed method.

MSC:

62H25 Factor analysis and principal components; correspondence analysis
62G08 Nonparametric regression and quantile regression

Software:

fda (R)

References:

[1] Ashby, F. G., Statistical Analysis of fMRI Data (2011), The MIT Press: The MIT Press Cambridge, MA
[2] Burdejová, P.; Härdle, W. K.; Kokoszka, P.; Xiong, Q., Change point and trend analysis of annual expectile curves of tropical storms, Econom. Stat., 1, 101-117 (2017)
[3] Cobzaş, Ş., Functional Analysis in Asymmetric Normed Spaces (2013), Birkhäuser/Springer Basel AG: Birkhäuser/Springer Basel AG Basel · Zbl 1266.46001
[4] Damon, J.; Marron, J., Backwards principal component analysis and principal nested relations, J. Math. Imaging Vision, 50, 107-114 (2014) · Zbl 1308.62124
[5] A. Daouia, S. Girard, G. Stupfler, Estimation of tail risk based on extreme expectiles, Working paper, 2016.; A. Daouia, S. Girard, G. Stupfler, Estimation of tail risk based on extreme expectiles, Working paper, 2016. · Zbl 1383.62235
[6] Ferraty, F.; Vieu, P., Nonparametric Functional Data Analysis: Theory and Practice (2006), Springer: Springer New York · Zbl 1119.62046
[7] Fraiman, R.; Pateiro-López, B., Quantiles for finite and infinite dimensional data, J. Multivariate Anal., 108, 1-14 (2012) · Zbl 1238.62063
[8] Gao, Y.; Xu, J.; Yang, S.; Tang, X.; Zhou, Q.; Ge, J.; Xu, T.; Levinson, R., Cool roofs in China: Policy review, building simulations, and proof-of-concept experiments, Energy Policy, 74, 190-214 (2014)
[9] Guo, M.; Zhou, L.; Härdle, W. K.; Huang, J., Functional data analysis of generalized regression quantiles, Stat. Comput., 25, 189-202 (2015) · Zbl 1331.62031
[10] Horváth, L.; Kokoszka, P., Inference for Functional Data with Applications (2012), Springer: Springer New York · Zbl 1279.62017
[11] Jolliffe, I. T., Principal Component Analysis (2004), Springer: Springer New York · Zbl 1011.62064
[12] Jorion, P., Risk management lessons from long-term capital management, Europ. Fin. Manag., 6, 277-300 (2000)
[13] Klein Tank, A. M.; Zwiers, F. W.; Zhang, X., Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation (2009), World Meteorological Organization
[14] Kong, L.; Mizera, I., Quantile tomography: Using quantiles with multivariate data, Statist. Sinica, 22, 1589-1610 (2012) · Zbl 1359.62175
[15] Kuan, C.-M.; Yeh, J.-H.; Hsu, Y.-C., Assessing value at risk with care, the conditional autoregressive expectile models, J. Econometrics, 150, 261-270 (2009) · Zbl 1429.62474
[16] Majer, P.; Mohr, P. N.C.; Heekeren, H. R.; Härdle, W. K., Portfolio decisions and brain reactions via the cead method, Psychometrika, 1-23 (2015)
[17] Mohr, P. N.; Biele, G.; Krugel, L. K.; Li, S.-C.; Heekeren, H. R., Neural foundations of risk-return trade-off in investment decisions, NeuroImage, 49, 2556-2563 (2010)
[18] Mohr, P. N.; Nagel, I. E., Neural foundations of risk-return trade-off in investment decisions, J. Neurosci., 30, 7755-7757 (2010)
[19] Newey, W.; Powell, J., Asymmetric least squares estimation and testing, Econometrica, 819-847 (1987) · Zbl 0625.62047
[20] Ramsay, J. O.; Silverman, B. W., Functional Data Analysis (2005), Springer: Springer New York · Zbl 1079.62006
[21] Ramsay, J. O.; Silverman, B. W., Applied Functional Data Analysis: Methods and Case Studies (2007), Springer: Springer New York · Zbl 1011.62002
[22] J.O. Ramsay, H. Wickham, S. Graves, G. Hooker, FDA: Functional Data Analysis, R; J.O. Ramsay, H. Wickham, S. Graves, G. Hooker, FDA: Functional Data Analysis, R
[23] Schnabel, S., Expectile Smoothing: New Perspectives on Asymmetric Least Squares — An Application to Life Expectancy (2011), Universiteit Utrecht, Utrecht: Universiteit Utrecht, Utrecht The Netherlands, (Ph.D. thesis)
[24] N. Srebro, T. Jaakkola, Weighted low-rank approximations, in: ICML’03, Proceedings of the Twentieth International Conference on International Conference on Machine Learning, AAAI Press, pp. 720-727.; N. Srebro, T. Jaakkola, Weighted low-rank approximations, in: ICML’03, Proceedings of the Twentieth International Conference on International Conference on Machine Learning, AAAI Press, pp. 720-727.
[25] Yu, H.; Xuming, H.; Jian, T.; Ning-Zhong, S., Modeling and prediction of children’s growth data via functional principal component analysis, Sci. China A, 52, 1342-1350 (2009) · Zbl 1176.62061
[26] Zhang, L.; Lu, S.; Marron, J., Nested nonnegative cone analysis, Comput. Statist. Data Anal., 88, 100-110 (2015) · Zbl 1468.62228
[27] Zhou, B.; Xu, Y.; Wu, J.; Dong, S.; Shi, Y., Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset, Int. J. Climatol., 36, 1051-1066 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.