×

Weak type estimates of singular integral operators on Morrey-Banach spaces. (English) Zbl 1418.42018

The author firstly defines Morrey-Banach spaces, which are Morrey spaces built on Banach function spaces. Subsequently, the author defines singular integral operators on Morrey-Banach spaces, and establishes weak-type estimates of these integral operators on Morrey-Banach spaces. As applications, the author obtains weak-type estimates for Calderón-Zygmund operators on Morrey spaces with variable exponent.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
42B35 Function spaces arising in harmonic analysis
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI

References:

[1] Almedia, M., Ferreira, L.: On the Navier-Stokes equations in the half-space with initial and boundary rough data in Morrey space. J. Differ. Equ. 254, 1548-1570 (2013) · Zbl 1255.76022 · doi:10.1016/j.jde.2012.11.001
[2] Almeida, A., Samko, S.: Approximation in Morrey space. J. Funct. Anal. 272, 2392-2411 (2017) · Zbl 1368.46027 · doi:10.1016/j.jfa.2016.11.015
[3] Alvarez, J., Pérez, C.: Estimates with \[A_{\infty }\] A∞ weights for various singular integral operators. Boll. Un. Mat. Ital. A (7) 8, 123-133 (1994) · Zbl 0807.42013
[4] Alvarez, J.; Ryan, J. (ed.), Continuity of Calderón-Zygmund type operators on the predual of a Morrey space, 309-319 (1996), Boca Raton · Zbl 0842.42008
[5] Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Cambridge (1988) · Zbl 0647.46057
[6] Calderón, A., Zygmund, A.: On singular integral. Am. J. Math. 78, 289-309 (1956) · Zbl 0072.11501 · doi:10.2307/2372517
[7] Christ, M.: Weak type (1,1) bounds for rough operators. Ann. Math. 128, 19-42 (1988) · Zbl 0666.47027 · doi:10.2307/1971461
[8] Chanillo, S., Christ, M.: Weak (1,1) bounds for oscillatory singular integrals. Duke Math. J. 55, 141-155 (1987) · Zbl 0667.42007 · doi:10.1215/S0012-7094-87-05508-6
[9] Coifman, R., Meyer, Y.: Au delà des opérateurs pseudo-différentiels. Astérisque 57, 1-210 (1978) · Zbl 0483.35082
[10] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.: The maximal function on variable \[L_p\] Lp spaces. Ann. Acad. Sci. Fenn. Math. 28, 223-238 (2003) · Zbl 1037.42023
[11] Cruz-Uribe, D., Fiorenza, S.F.O,A., Martell, J., Pérez, C.: The boundedness of classical operators on variable \[L^p\] Lp spaces. Ann. Acad. Sci. Fenn. Math. 31, 239-264 (2006) · Zbl 1100.42012
[12] Cruz-Uribe, D., Martell, J., Pérez, C.: Weights, Extrapolation and the Theory of Rubio de Francia, Operator Theory: Advance and Applications, vol. 215. Birkhäuser, Basel (2011) · Zbl 1234.46003
[13] Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Birkhäuser, Basel (2013) · Zbl 1268.46002 · doi:10.1007/978-3-0348-0548-3
[14] Curbera, G., García-Cuerva, J., Martell, J., Pérez, C.: Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals. Adv. Math. 203, 256-318 (2006) · Zbl 1098.42017 · doi:10.1016/j.aim.2005.04.009
[15] Diening, L., Harjulehto, P., Hästö, P., Ružička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, Berlin (2011) · Zbl 1222.46002 · doi:10.1007/978-3-642-18363-8
[16] Ferreira, L.: On a bilinear estimate in weak-Morrey spaces and uniqueness for Navier-Stokes equations. J. Math. Pures Appl. (9) 105, 228-247 (2016) · Zbl 1334.35204 · doi:10.1016/j.matpur.2015.10.004
[17] Folland, G.: Real Analysis, Modern Techniques and Their Applications. Wiley, Hoboken (1984) · Zbl 0549.28001
[18] Giga, Y., Miyakawa, T.: Navier-Stokes flow in \[{\mathbb{R}}^3\] R3 with measures as initial vorticity and Morrey spaces. Commun. Partial Differ. Equ. 14, 577-618 (1989) · Zbl 0681.35072 · doi:10.1080/03605308908820621
[19] Grafakos, L.: Modern Fourier Analysis. Springer (2009) · Zbl 1158.42001
[20] Guliyev, V.: Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces. J. Inequal. Appl. 2009, 503948 (2009) · Zbl 1193.42082 · doi:10.1155/2009/503948
[21] Ho, K.-P.: Atomic decomposition of Hardy spaces and characterization of \[BMO\] BMO via Banach function spaces. Anal. Math. 38, 173-185 (2012). Ho, K.-P.: Correction of “Atomic decomposition of Hardy spaces and characterization of <InlineEquation ID=”IEq376“> <EquationSource Format=”TEX“>\[BMO\] <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> <mi mathvariant=”italic“>BMO via Banach function spaces. Anal. Math. (<Emphasis Type=”Bold”>to appear) · Zbl 1289.46049
[22] Ho, K.-P.: Vector-valued singular integral operators on Morrey type spaces and variable Triebel-Lizorkin-Morrey spaces. Ann. Acad. Sci. Fenn. Math. 37, 375-406 (2012) · Zbl 1261.42016 · doi:10.5186/aasfm.2012.3746
[23] Ho, K.-P.: Sobolev-Jawerth embedding of Triebel-Lizorkin-Morrey-Lorentz spaces and fractional integral operators on Hardy type spaces. Math. Nachr. 287, 1674-1686 (2014) · Zbl 1314.46043 · doi:10.1002/mana.201300217
[24] Ho, K.-P.: Vector-valued operators with singular kernel and Triebel-Lizorkin-block spaces with variable exponents. Kyoto J. Math. 56, 97-124 (2016) · Zbl 1361.42024 · doi:10.1215/21562261-3445165
[25] Ho, K.-P.: Extrapolation, John-Nirenberg inequalities and characterizations of \[BMO\] BMO in terms of Morrey type spaces. Rev. Mat. Complut. 30, 487-505 (2017) · Zbl 1385.42012 · doi:10.1007/s13163-016-0216-z
[26] Ho, K.-P.: Fractional integral operators with homogeneous kernels on Morrey spaces with variable exponents. J. Math. Soc. Jpn. 69, 1059-1077 (2017) · Zbl 1404.42030 · doi:10.2969/jmsj/06931059
[27] Ho, K.-P.: Singular integral operators with rough kernel on Morrey type spaces. Studia Math. 244, 217-243 (2019) · Zbl 1423.42025 · doi:10.4064/sm8390-8-2017
[28] Ho, K.-P.: Definability of singular integral operators on Morrey-Banach spaces J. Math. Soc. Jpn. (published online) · Zbl 1437.42016
[29] Kalton, N., Peck, N., Roberts, J.: An \[FF\]-Space Sampler, London Mathematical Society, Lecture Note Series, vol. 89. Cambridge University Press, Cambridge (1984) · Zbl 0556.46002
[30] Kato, T.: Strong solutions of the Navier-Stokes equation in Morrey spaces. Bol. Soc. Bras. Mat. 22, 127-155 (1992) · Zbl 0781.35052 · doi:10.1007/BF01232939
[31] Kokilashvili, V., Meskhi, A.: Boundedness of maximal and singular operators in Morrey spaces with variable exponent. Armen. J. Math. 1, 18-28 (2008) · Zbl 1281.42012
[32] Maio, C.-X., Yuan, B.-Q.: Weak Morrey spaces and strong solutions to the Navier-Stokes equations. Sci. China Ser. A 50, 1401-1417 (2007) · Zbl 1149.35071 · doi:10.1007/s11425-007-0101-9
[33] Meyer, Y., Coifman, R.: Wavelets: Calderón-Zygmund and Multilinear Operators. Cambridge University Press, Cambridge (1997) · Zbl 0916.42023
[34] Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95-104 (1994) · Zbl 0837.42008 · doi:10.1002/mana.19941660108
[35] Nakai, E.: Orlicz-Morrey spaces and the Hardy-Littlewood maximal function. Studia Math. 188, 193-221 (2008) · Zbl 1163.46020 · doi:10.4064/sm188-3-1
[36] Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970) · Zbl 0207.13501
[37] Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993) · Zbl 0821.42001
[38] Taylor, M.E.: Analysis on Morrey spaces and appplications to Navier-Stokes and other evolution equations. Commun. Partial Differ. Equ. 17, 1407-1456 (1992) · Zbl 0771.35047 · doi:10.1080/03605309208820892
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.