×

Natural selection between two games with applications to game theoretical models of cancer. (English) Zbl 1417.92071

Summary: Evolutionary game theory has been used extensively to study single games as applied to cancer, including in the context of metabolism, development of resistance, and even games between tumor and treatment. However, the situation when several games are being played against each other at the same time has not yet been investigated. Here, we describe a mathematical framework for analyzing natural selection not just between strategies, but between games. We provide theoretical analysis of situations of natural selection between the games of prisoner’s dilemma and hawk-dove, and demonstrate that while the dynamics of cooperators and defectors within their respective games is as expected, the distribution of games changes over time due to natural selection. We also investigate the question of mutual invasibility of games with respect to different strategies and different initial population composition. We conclude with a discussion of how the proposed approach can be applied to other games in cancer, such as motility versus stability strategies that underlie the process of metastatic invasion.

MSC:

92C50 Medical applications (general)
92C17 Cell movement (chemotaxis, etc.)
91A22 Evolutionary games
Full Text: DOI

References:

[1] Alizadeh AA, Aranda V, Bardelli A, Blanpain C, Bock C, Borowski C et al (2015) Toward understanding and exploiting tumor heterogeneity. Nat Med 21(8):846 · doi:10.1038/nm.3915
[2] Amend SR, Pienta KJ (2015) Ecology meets cancer biology: the cancer swamp promotes the lethal cancer phenotype. Oncotarget 6(12):9669 · doi:10.18632/oncotarget.3430
[3] Archetti M (2013) Evolutionary game theory of growth factor production: implications for tumour heterogeneity and resistance to therapies. Br J Cancer 109(4):1056 · doi:10.1038/bjc.2013.336
[4] Arnoux V, Côme C, Kusewitt DF, Hudson LG, Savagner P(2005) Cutaneous wound reepithelialization. In: Rise and fall of epithelial phenotype, pp 111-134
[5] Barriere G, Fici P, Gallerani G, Fabbri F, Rigaud M (2015) Epithelial mesenchymal transition: a double-edged sword. Clin Transl Med 4(1):14 · doi:10.1186/s40169-015-0055-4
[6] Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat Rev Cancer 18(2):128 · doi:10.1038/nrc.2017.118
[7] Cressman R (2013) The stability concept of evolutionary game theory: a dynamic approach. Springer, Berlin · Zbl 0763.92006
[8] Dingli D, Chalub F, Santos F, Van Segbroeck S, Pacheco J (2009) Cancer phenotype as the outcome of an evolutionary game between normal and malignant cells. Br J Cancer 101(7):1130 · doi:10.1038/sj.bjc.6605288
[9] Driscoll WW, Pepper JW (2010) Theory for the evolution of diffusible external goods. Evolution 64(9):2682-2687 · doi:10.1111/j.1558-5646.2010.01002.x
[10] Fedriani JM, Manzaneda AJ (2005) Pre-and postdispersal seed predation by rodents: balance of food and safety. Behav Ecol 16(6):1018-1024 · doi:10.1093/beheco/ari082
[11] Fidler IJ (1978) Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res 38(9):2651-2660
[12] Fustaino V, Presutti D, Colombo T, Cardinali B, Papoff G, Brandi R et al (2017) Characterization of epithelial-mesenchymal transition intermediate/hybrid phenotypes associated to resistance to EGFR inhibitors in non-small cell lung cancer cell lines. Oncotarget 8(61):103340 · doi:10.18632/oncotarget.21132
[13] Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge · Zbl 0914.90287 · doi:10.1017/CBO9781139173179
[14] Hummert S, Bohl K, Basanta D, Deutsch A, Werner S, Theißen G et al (2014) Evolutionary game theory: cells as players. Mol BioSyst 10(12):3044-3065 · doi:10.1039/C3MB70602H
[15] Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E et al (2015) Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front Oncol 5:155 · doi:10.3389/fonc.2015.00155
[16] Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Investig 119(6):1420-1428 · doi:10.1172/JCI39104
[17] Karev GP (2010a) On mathematical theory of selection: continuous time population dynamics. J Math Biol 60(1):107-129 · Zbl 1311.92137 · doi:10.1007/s00285-009-0252-0
[18] Karev GP (2010b) Replicator equations and the principle of minimal production of information. Bull Math Biol 72(5):1124-1142 · Zbl 1197.92004 · doi:10.1007/s11538-009-9484-9
[19] Karev GP (2018) Evolutionary games: natural selection of strategies. arXiv preprint arXiv:1802.07190 [q-bio.PE]
[20] Karev G, Kareva I (2014) Replicator equations and models of biological populations and communities. Math Model Nat Phenom 9(3):68-95 · Zbl 1338.92106 · doi:10.1051/mmnp/20149305
[21] Kareva I (2011) Prisoner’s dilemma in cancer metabolism. PLoS ONE 6(12):e28576 · doi:10.1371/journal.pone.0028576
[22] Kareva I (2015) Cancer ecology: niche construction, keystone species, ecological succession, and ergodic theory. Biol Theory 10(4):283-288 · doi:10.1007/s13752-015-0226-y
[23] Kianercy A, Veltri R, Pienta KJ (2014) Critical transitions in a game theoretic model of tumour metabolism. Interface Focus R Soc 4(4):20140014 · doi:10.1098/rsfs.2014.0014
[24] Kotler B (2016) Fun and Games: Predator – prey foraging games and related interactions. Taylor & Francis, London
[25] Liu D, Song H, Xu Y (2010) A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene 29(7):949 · doi:10.1038/onc.2009.376
[26] Marusyk A (1805) Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochimica et Biophysica Acta (BBA) Rev Cancer 1:105-117
[27] Merlo LM, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6(12):924 · doi:10.1038/nrc2013
[28] Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplas 15(2):117-134 · doi:10.1007/s10911-010-9178-9
[29] Nieto MA (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342(6159):1234850 · doi:10.1126/science.1234850
[30] Nonacs P, Dill LM (1990) Mortality risk vs food quality trade-offs in a common currency: ant patch preferences. Ecology 71(5):1886-1892 · doi:10.2307/1937596
[31] Orlando PA, Gatenby RA, Brown JS (2012) Cancer treatment as a game: integrating evolutionary game theory into the optimal control of chemotherapy. Phys Biol 9(6):065007 · doi:10.1088/1478-3975/9/6/065007
[32] Pepper JW (2012) Drugs that target pathogen public goods are robust against evolved drug resistance. Evolut Appl 5(7):757-761 · doi:10.1111/j.1752-4571.2012.00254.x
[33] Pettersson LB, Brönmark C (1993) Trading off safety against food: state dependent habitat choice and foraging in crucian carp. Oecologia 95(3):353-357 · doi:10.1007/BF00320988
[34] Revenu C, Gilmour D (2009) EMT 2.0: shaping epithelia through collective migration. Curr Opin Genet Dev 19(4):338-342 · doi:10.1016/j.gde.2009.04.007
[35] Shiraishi T, Verdone JE, Huang J, Kahlert UD, Hernandez JR, Torga G et al (2015) Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells. Oncotarget 6(1):130 · doi:10.18632/oncotarget.2766
[36] Smith JM, Price GR (1973) The logic of animal conflict. Nature 246(5427):15 · Zbl 1369.92134 · doi:10.1038/246015a0
[37] Taylor PD, Jonker LB (1978) Evolutionary stable strategies and game dynamics. Math Biosci 40(1-2):145-156 · Zbl 0395.90118 · doi:10.1016/0025-5564(78)90077-9
[38] Tomlinson I (1997) Game-theory models of interactions between tumour cells. Eur J Cancer 33(9):1495-1500 · doi:10.1016/S0959-8049(97)00170-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.