×

Establishing quantum steerability on cavity arrays coupled by optical fibers with open boundary conditions. (English) Zbl 1417.81051

Summary: We study quantum steerability on one-dimensional cavity array systems with open boundary conditions, where each cavity is doped with a two-level atom and coupled with its neighbor nodes by optical fibers. In the far off-resonant condition, we obtain explicit expressions for the dynamical evolution of the array system with arbitrary number of nodes. By investigating the steerable weight for two-node subsystems, we show that remote quantum steerability can be established through both single-array and double independent arrays. Moreover, comparisons between quantum steerability and quantum entanglement in this model are also examined.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
81P05 General and philosophical questions in quantum theory
81V80 Quantum optics
78A50 Antennas, waveguides in optics and electromagnetic theory
81P68 Quantum computation
90C22 Semidefinite programming
Full Text: DOI

References:

[1] Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[2] Schrödinger, E.: Probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 32(3), 446 (1936) · JFM 62.1613.03 · doi:10.1017/S0305004100019137
[3] Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009) · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[4] Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1(3), 195-200 (1964) · doi:10.1103/PhysicsPhysiqueFizika.1.195
[5] Händchen, V., Eberle, T., Steinlechner, S., Samblowski, A., Franz, T., Werner, R.F., Schnabel, R.: Observation of one-way Einstein-Podolsky-Rosen steering. Nat. Photon. 6, 596599 (2012) · doi:10.1038/nphoton.2012.202
[6] Gallego, R., Aolita, L.: Resource theory of steering. Phys. Rev. X 5, 041008 (2015) · Zbl 1372.81018
[7] Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301(R) (2012) · doi:10.1103/PhysRevA.85.010301
[8] He, Q.Y., Reid, M.D.: Genuine multipartite Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 111, 250403 (2013) · doi:10.1103/PhysRevLett.111.250403
[9] Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007) · doi:10.1103/PhysRevLett.98.230501
[10] Jones, S.J., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007) · Zbl 1255.81029 · doi:10.1103/PhysRevA.76.052116
[11] Cavalcanti, E.G., Jonesm, S.J., Wisemanm, H.M., Reid, M.D.: Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox. Phys. Rev. A 80, 032112 (2009) · doi:10.1103/PhysRevA.80.032112
[12] Saunders, D.J., Jones, S.J., Wiseman, H.M., Pryde, G.J.: Experimental EPR-steering using Bell-local states. Nat. Phys. 6, 845 (2010) · doi:10.1038/nphys1766
[13] Bennet, A.J., Evans, D.A., Saunders, D.J., Branciard, C., Cavalcanti, E.G., Wiseman, H.M., Pryde, G.J.: Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole. Phys. Rev. X 2, 031003 (2012)
[14] Evans, D.A., Wiseman, H.M.: Optimal measurements for tests of Einstein-Podolsky-Rosen steering with no detection loophole using two-qubit Werner states. Phys. Rev. A 90, 012114 (2014) · doi:10.1103/PhysRevA.90.012114
[15] Skrzypczyk, P., Cavalcanti, D.: Loss-tolerant Einstein-Podolsky-Rosen steering for arbitrary-dimensional states: joint measurability and unbounded violations under losses. Phys. Rev. A 92, 022354 (2015) · doi:10.1103/PhysRevA.92.022354
[16] Skrzypczyk, P., Navascus, M., Cavalcanti, D.: Quantifying Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 112, 180404 (2014) · doi:10.1103/PhysRevLett.112.180404
[17] Kogias, I., Lee, A.R., Ragy, S., Adesso, G.: Quantification of Gaussian quantum steering. Phys. Rev. Lett. 114, 060403 (2015) · doi:10.1103/PhysRevLett.114.060403
[18] Kogias, I., Adesso, G.: Einstein-Podolsky-Rosen steering measure for two-mode continuous variable states. J. Opt. Soc. Am. B 32, A27 (2015) · doi:10.1364/JOSAB.32.000A27
[19] Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575 (1997) · Zbl 1369.81006 · doi:10.1038/37539
[20] Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long distance quantum communication with atomic ensembles and linear optics. Nature (London) 414, 413 (2001) · doi:10.1038/35106500
[21] Ritter, S., Nölleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., Mücke, M., Figueroa, E., Bochmann, J., Rempe, G.: An elementary quantum network of single atoms in optical cavities. Nature (London) 484, 195 (2012) · doi:10.1038/nature11023
[22] Zhang, J.F., Long, G.L., Zhang, W., Deng, Z.W., Liu, W.Z., Lu, Z.H.: Simulation of Heisenberg XY interactions and realization of a perfect state transfer in spin chains using liquid nuclear magnetic resonance. Phys. Rev. A 72, 012331 (2005) · doi:10.1103/PhysRevA.72.012331
[23] Kimble, H.: The quantum internet. Nature (London) 453, 1023 (2008) · doi:10.1038/nature07127
[24] Douglas, J.S., Habibian, H., Hung, C.-L., Gorshkov, A.V., Kimble, H.J., Chang, D.E.: Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326 (2015) · doi:10.1038/nphoton.2015.57
[25] Qin, W., Nori, F.: Controllable single-photon transport between remote coupled-cavity arrays. Phys. Rev. A 93, 032337 (2016) · doi:10.1103/PhysRevA.93.032337
[26] Lombardo, F., Ciccarello, F., Palma, G.M.: Photon localization versus population trapping in a coupled-cavity array. Phys. Rev. A 89, 053826 (2014) · doi:10.1103/PhysRevA.89.053826
[27] Liao, J.Q., Gong, Z.R., Zhou, L., Liu, Y.X., Sun, C.P., Nori, F.: Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities. Phys. Rev. A 81, 042304 (2010) · doi:10.1103/PhysRevA.81.042304
[28] Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49-95 (1996) · Zbl 0845.65023 · doi:10.1137/1038003
[29] Chen, S.L., Lambert, N., Li, C.M., Miranowicz, A., Chen, Y.N., Nori, F.: Quantifying non-Markovianity with temporal steering. Phys. Rev. Lett. 116, 020503 (2016) · doi:10.1103/PhysRevLett.116.020503
[30] Xiong, S.J., Zhang, Y., Sun, Z., Yu, L., Sun, Q., Xu, X.Q., Jin, J.S., Xu, Q., Liu, J.M., Chen, K., Yang, C.: Experimental simulation of a quantum channel without the rotating-wave approximation: testing quantum temporal steering. Optica 4, 1065 (2017) · doi:10.1364/OPTICA.4.001065
[31] Liu, B., Huang, Y., Sun, Z.: Quantum temporal steering in a dephasing channel with quantum criticality. Ann. Phys. (Berlin) 530, 1700373 (2018) · Zbl 1543.81062 · doi:10.1002/andp.201700373
[32] Sun, Z., Xu, X.Q., Liu, B.: Creation of quantum steering by interaction with a common bath. Phys. Rev. A 97, 052309 (2018) · doi:10.1103/PhysRevA.97.052309
[33] Chen, S.L., Lambert, N., Li, C.M., Chen, G.Y., Chen, Y.N., Miranowicz, A., Nori, F.: Spatio-temporal steering for testing nonclassical correlations in quantum networks. Sci. Rep. 7, 3728 (2017) · doi:10.1038/s41598-017-03789-4
[34] Chen, L., Zhang, Y.Q.: Quantum steering in magnetic Heisenberg models at finite temperature. EPL 120, 60007 (2017) · doi:10.1209/0295-5075/120/60007
[35] Zhang, Y.Q., Sun, Y.T., Chen, L.: Dynamics of quantum steerability for two atoms in coupled cavities. J. Modern Opt. 65, 2011-6 (2018) · doi:10.1080/09500340.2018.1487595
[36] Cavalcanti, D., Skrzypczyk, P.: Quantum steering: a review with focus on semidefinite programming. Rep. Progress Phys. 80, 024001 (2017) · doi:10.1088/1361-6633/80/2/024001
[37] Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997) · doi:10.1017/CBO9780511813993
[38] Pellizzari, T.: Quantum networking with optical fibers. Phys. Rev. Lett. 79, 5242-5 (1997) · doi:10.1103/PhysRevLett.79.5242
[39] Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006) · doi:10.1103/PhysRevLett.96.010503
[40] Giampaolo, S.M., Illuminati, F.: Long-distance entanglement and quantum teleportation in coupled-cavity arrays. Phys. Rev. A 80, 050301(R) (2009) · doi:10.1103/PhysRevA.80.050301
[41] Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature (London) 436, 87 (2005) · doi:10.1038/nature03804
[42] Imamoḡlu, A., Woods, S.G., Deutsch, M.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1997) · doi:10.1103/PhysRevLett.79.1467
[43] James, D.F., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys. 85, 625 (2007) · doi:10.1139/p07-060
[44] Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407-66 (1967) · Zbl 0129.46401 · doi:10.1016/0003-4916(61)90115-4
[45] Schultz, T.D., Mattis, D.C., Lieb, E.H.: Two-dimensional Ising model as a soluble problem of many fermions. Rev. Mod. Phys. 36, 856-71 (1964) · doi:10.1103/RevModPhys.36.856
[46] Hu, Z.D., Zhang, Y.Q., Xu, J.B.: Quantum communication through open-ended quantum networks. J. Phys. A Math. Theor. 44, 425303 (2011) · Zbl 1228.81100 · doi:10.1088/1751-8113/44/42/425303
[47] Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245-8 (1998) · Zbl 1368.81047 · doi:10.1103/PhysRevLett.80.2245
[48] Piani, M., Watrous, J.: Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 114, 060404 (2015) · doi:10.1103/PhysRevLett.114.060404
[49] Sandberg, M., Wilson, C.M., Persson, F., Bauch, T., Johansson, G., Shumeiko, V., Duty, T., Delsing, P.: Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett. 92, 203501 (2008) · doi:10.1063/1.2929367
[50] Liao, J.Q., Huang, J.F., Liu, Y.X., Kuang, L.M., Sun, C.P.: Quantum switch for single-photon transport in a coupled superconducting transmission-line-resonator array. Phys. Rev. A 80, 014301 (2009) · doi:10.1103/PhysRevA.80.014301
[51] Houck, A.A., Schuster, D.I., Gambetta, J.M., Schreier, J.A., Johnson, B.R., Chow, J.M., Frunzio, L., Majer, J., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Generating single microwave photons in a circuit. Nature (London) 449, 328 (2007) · doi:10.1038/nature06126
[52] Hartmann, M.J., Brandão, F.G.S.L., Plenio, M.B.: Quantum many-body phenomena in coupled cavity arrays. Laser Photon. Rev. 2, 527 (2008) · doi:10.1002/lpor.200810046
[53] Gordon, K.J., Fernandez, V., Townsend, P.D., Buller, G.S.: A short wavelength gigahertz clocked fiber-optic quantum key distribution system. IEEE J. Quantum Electron. 40, 900 (2004) · doi:10.1109/JQE.2004.830182
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.