×

Nondoubling Calderón-Zygmund theory: a dyadic approach. (English) Zbl 1417.42008

Summary: Given a measure \(\mu\) of polynomial growth, we refine a deep result by David and Mattila to construct an atomic martingale filtration of \(\operatorname{supp}(\mu )\) which provides the right framework for a dyadic form of nondoubling harmonic analysis. Despite this filtration being highly irregular, its atoms are comparable to balls in the given metric – which in turn are all doubling – and satisfy a weaker but crucial form of regularity. Our dyadic formulation is effective to address three basic questions:
(i)
A dyadic form of Tolsa’s RBMO space which contains it.
(ii)
Lerner’s domination and \(A_2\)-type bounds for nondoubling measures.
(iii)
A noncommutative form of nonhomogeneous Calderón-Zygmund theory.
Our martingale RBMO space preserves the crucial properties of Tolsa’s original definition and reveals its interpolation behavior with the \(L_p\) scale in the category of Banach spaces, unknown so far. On the other hand, due to some known obstructions for Haar shifts and related concepts over nondoubling measures, our pointwise domination theorem via sparsity naturally deviates from its doubling analogue. In a different direction, matrix-valued harmonic analysis over noncommutative \(L_p\) spaces has recently produced profound applications. Our analogue for nondoubling measures was expected for quite some time. Finally, we also find a dyadic form of the Calderón-Zygmund decomposition which unifies those by Tolsa and López-Sánchez/Martell/Parcet.

MSC:

42A61 Probabilistic methods for one variable harmonic analysis
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B35 Function spaces arising in harmonic analysis
46M35 Abstract interpolation of topological vector spaces
46L51 Noncommutative measure and integration

References:

[1] Caspers, M., Potapov, D., Sukochev, F., Zanin, D.: Weak type commutator and lipschitz estimates: resolution of the Nazarov-Peller conjecture. Preprint arXiv:1506.00778 [math.FA] · Zbl 07069612
[2] Conde, J.M.: A note on dyadic coverings and nondoubling Calderón-Zygmund theory. J. Math. Anal. Appl. 397(2), 785-790 (2013) · Zbl 1254.42021
[3] Conde-Alonso, J.M., Parcet, J.: Atomic blocks for noncommutative martingales. Indiana Univ. Math. J. 65(4), 1425-1443 (2016) · Zbl 1435.60032
[4] Conde-Alonso, J.M., Rey, G.: On a pointwise estimate for positive dyadic shifts and some applications. Math. Ann. 365(3), 1111-1135 (2016) · Zbl 1353.42011
[5] Conde-Alonso, J.M., Mei, T., Parcet, J.: Large BMO spaces vs interpolation. Anal. PDE 8(3), 713-746 (2015) · Zbl 1316.42027
[6] Cruz-Uribe, D., Martell, J.M., Pérez, C.: Sharp weighted estimates for classical operators. Adv. Math. 229(1), 408-441 (2012) · Zbl 1236.42010
[7] David, G., Mattila, P.: Removable sets for Lipschitz harmonic functions in the plane. Rev. Mat. Iberoam. 16(1), 137-215 (2000) · Zbl 0976.30016
[8] Garnett, J.B., Jones, \[P.W.: \text{ BMO }\] BMO from dyadic \[\text{ BMO }\] BMO. Pacif. J. Math. 99(2), 351-371 (1982) · Zbl 0516.46021
[9] Garsia, A.M.: Martingale inequalities: Seminar notes on recent progress. In: Mathematics Lecture Notes Series. W. A. Benjamin, Inc., Reading/London/Amsterdam (1973) · Zbl 0284.60046
[10] Hänninen, T.S.: Remark on dyadic pointwise domination and median oscillation decomposition. Houston J. Math. 43(1), 183-197 (2017) · Zbl 1369.42012
[11] Hong, G., Mei, T.: John-Nirenberg inequality and atomic decomposition for noncommutative martingales. J. Funct. Anal. 263(4), 1064-1097 (2012) · Zbl 1368.46053
[12] Hytönen, T.P.: A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ. Mat. 54(2), 485-504 (2010) · Zbl 1246.30087
[13] Hytönen, T.P.: The sharp weighted bound for general Calderón-Zygmund operators. Ann. of Math. (2) 175(3), 1473-1506 (2012) · Zbl 1250.42036
[14] Junge, M., Musat, M.: A noncommutative version of the John-Nirenberg theorem. Trans. Am. Math. Soc. 359(1), 115-142 (2007) · Zbl 1173.46046
[15] Junge, M., Mei, T., Parcet, J.: Smooth Fourier multipliers on group von Neumann algebras. Geom. Funct. Anal. 24(6), 1913-1980 (2014) · Zbl 1306.43001
[16] Lacey, M.T.: An elementary proof of the \[{\rm A}_2\] A2 bound. Israel J. Math. 217, 181-195 (2017) · Zbl 1368.42016
[17] Lance, E.C.: Hilbert \[C^*C\]∗-modules: a toolkit for operator algebraists. In: Proceedings of the London Mathematical Society Lecture Note Series, vol. 210. Cambridge University Press, Cambridge (1995) · Zbl 0822.46080
[18] Lerner, A.K.: On pointwise estimates involving sparse operators. New York J. Math. 22, 341-349 (2016) · Zbl 1347.42030
[19] Lerner, A.K.: A pointwise estimate for the local sharp maximal function with applications to singular integrals. Bull. Lond. Math. Soc. 42(5), 843-856 (2010) · Zbl 1203.42023
[20] Lerner, A.K.: On an estimate of Calderón-Zygmund operators by dyadic positive operators. J. Anal. Math. 121, 141-161 (2013) · Zbl 1285.42015
[21] Lerner, A.K., Nazarov, F.: Intuitive dyadic calculus: the basics. Preprint arXiv:1508.05639 · Zbl 1440.42062
[22] López-Sánchez, L.D., Martell, J.M., Parcet, J.: Dyadic harmonic analysis beyond doubling measures. Adv. Math. 267, 44-93 (2014) · Zbl 1304.42041
[23] Mei, T.: Operator valued Hardy spaces. Mem. Am. Math. Soc 188(881), vi+64 (2007) · Zbl 1138.46038
[24] Musat, M.: Interpolation between non-commutative BMO and non-commutative \[L_p\] Lp-spaces. J. Funct. Anal. 202(1), 195-225 (2003) · Zbl 1042.46038
[25] Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. 9, 463-487 (1998) · Zbl 0918.42009
[26] Nazarov, F., Treil, S., Volberg, A.: The \[TbTb\]-theorem on non-homogeneous spaces. Acta Math. 190(2), 151-239 (2003) · Zbl 1065.42014
[27] Parcet, J.: Pseudo-localization of singular integrals and noncommutative Calderón-Zygmund theory. J. Funct. Anal. 256(2), 509-593 (2009) · Zbl 1179.46051
[28] Petermichl, S.: Of some sharp estimates involving Hilbert transform. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.), Michigan State University (2000)
[29] Pisier, G., Xu, Q.: Non-commutative martingale inequalities. Commun. Math. Phys. 189(3), 667-698 (1997) · Zbl 0898.46056
[30] Tolsa, X.: BMO, \[ \text{ H }^1\] H1, and Calderón-Zygmund operators for non doubling measures. Math. Ann. 319(1), 89-149 (2001) · Zbl 0974.42014
[31] Tolsa, X.: A proof of the weak \[(1,1)(1,1)\] inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition. Publ. Mat. 45(1), 163-174 (2001) · Zbl 0980.42012
[32] Tolsa, X.: Weighted norm inequalities for Calderón-Zygmund operators without doubling conditions. Publ. Mat. 51(2), 397-456 (2007) · Zbl 1136.42303
[33] Volberg, A., Zorin-Kranich, P.: Sparse domination on non-homogeneous spaces with an application to \[{A}_p\] Ap weights. Preprint arXiv:1606.03340 · Zbl 1409.42013
[34] Volberg, A.L., Eiderman, V.Y.: Nonhomogeneous harmonic analysis: 16 years of development. Uspekhi Mat. Nauk. 68(6), 3-58 (2013) · Zbl 1293.30057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.