×

Fluctuations for stationary \(q\)-TASEP. (English) Zbl 1416.82030

Summary: We consider the \(q\)-totally asymmetric simple exclusion process (\(q\)-TASEP) in the stationary regime and study the fluctuation of the position of a particle. We first observe that the problem can be studied as a limiting case of an \(N\)-particle \(q\)-TASEP with a random initial condition and with particle dependent hopping rate. Then we explain how this \(N\)-particle \(q\)-TASEP can be encoded in a dynamics on a two-sided Gelfand-Tsetlin cone described by a two-sided \(q\)-Whittaker process and present a Fredholm determinant formula for the \(q\)-Laplace transform of the position of a particle. Two main ingredients in its derivation is the Ramanujan’s bilateral summation formula and the Cauchy determinant identity for the theta function with an extra parameter. Based on this we establish that the position of a particle obeys the universal stationary KPZ distribution (the Baik-Rains distribution) in the long time limit.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
33D52 Basic orthogonal polynomials and functions associated with root systems (Macdonald polynomials, etc.)
44A12 Radon transform

References:

[1] Aggarwal, A.: Current fluctuations of the stationary ASEP and six-vertex model. Duke Math. J. 167, 269-384 (2018) · Zbl 1403.60081 · doi:10.1215/00127094-2017-0029
[2] Aggarwal, A., Borodin, A.: Phase transitions in the ASEP and stochastic six-vertex model. arXiv:1607.08684 · Zbl 1466.60191
[3] Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in \[1+11+1\] dimensions. Commun. Pure Appl. Math. 64, 466-537 (2011) · Zbl 1222.82070 · doi:10.1002/cpa.20347
[4] Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2009) · Zbl 1184.15023 · doi:10.1017/CBO9780511801334
[5] Andjel, E.D.: Invariant Measures for the Zero Range Process. Ann. Probab. 10, 525-547 (1982) · Zbl 0492.60096 · doi:10.1214/aop/1176993765
[6] Andrews, G.E., Askey, R., Roy, R.: Special Functions. Volume 71 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1999) · Zbl 0920.33001
[7] Baik, J., Ferrari, P.L., Péché, S.: Limit process of stationary TASEP near the characteristic line. Commun. Pure Appl. Math. 63, 1017-1070 (2010) · Zbl 1194.82067
[8] Baik, J., Rains, E.M.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100, 523-541 (2000) · Zbl 0976.82043 · doi:10.1023/A:1018615306992
[9] Barabási, A.L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995) · Zbl 0838.58023 · doi:10.1017/CBO9780511599798
[10] Barraquand, G.: A phase transition for \[q\] q-TASEP with a few slower particles. Stoch. Process Their Appl. 125, 2674-2699 (2015) · Zbl 1314.60153 · doi:10.1016/j.spa.2015.01.009
[11] Bertini, L., Giacomin, G.: Stochastic burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571-607 (1997) · Zbl 0874.60059 · doi:10.1007/s002200050044
[12] Borodin, A.: Biorthogonal ensembles. Nucl. Phys. B 536, 704-732 (1998) · Zbl 0948.82018 · doi:10.1016/S0550-3213(98)00642-7
[13] Borodin, A.: Determinantal point processes. arXiv:0911.1153 · Zbl 1238.60055
[14] Borodin, A.: Stochastic higher spin six vertex model and Madconald measures. arXiv:1608.01553 · Zbl 1382.82029
[15] Borodin, A.: Schur dynamics of the Schur processes. Adv. Math. 228, 2268-2291 (2011) · Zbl 1234.60012 · doi:10.1016/j.aim.2011.06.038
[16] Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158, 225-400 (2014) · Zbl 1291.82077 · doi:10.1007/s00440-013-0482-3
[17] Borodin, A., Corwin, I., Ferrari, P.L., Veto, B.: Height fluctuations for the stationary KPZ equation. Math. Phys. Anal. Geom. 18, 1-95 (2015) · Zbl 1332.82068 · doi:10.1007/s11040-015-9189-2
[18] Borodin, A., Corwin, I., Remenik, D.: Log-gamma polymer free energy fluctuations via a Fredholm determinant identity. Commun. Math. Phys. 324, 215-232 (2013) · Zbl 1479.82112 · doi:10.1007/s00220-013-1750-x
[19] Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for \[q\] q-TASEP and ASEP. Ann. Probab. 42, 2314-2382 (2014) · Zbl 1304.82048 · doi:10.1214/13-AOP868
[20] Borodin, A., Ferrari, P.L.: Anisotropic growth of random surfaces in \[2+12+1\] dimensions. Commun. Math. Phys. 325, 603-684 (2014) · Zbl 1303.82015 · doi:10.1007/s00220-013-1823-x
[21] Borodin, A., Ferrari, P.L., Prähofer, M.: Fluctuations in the discrete TASEP with periodic initial configurations and the \[\text{Airy}_1\] Airy1 process. International Mathematics Research Papers (2007), rpm002 · Zbl 1136.82321
[22] Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055-1080 (2007) · Zbl 1136.82028 · doi:10.1007/s10955-007-9383-0
[23] Bump, D.: The Rankin Selberg Method: A Survey, Number Theory, Trace Formulas and Discrete Groups. Academic Press, Cambridge (1989) · Zbl 0668.10034
[24] Burke, P.J.: The output of a queuing system. Oper. Res. 4, 699-704 (1956) · Zbl 1414.90097 · doi:10.1287/opre.4.6.699
[25] Calabrese, P., Le Doussal, P., Rosso, A.: Free-energy distribution of the directed polymer at high temperature. Eur. Phys. Lett. 90, 200002 (2010) · doi:10.1209/0295-5075/90/20002
[26] Carinci, G., Giardina, C., Redig, F., Sasamoto, T.: A generalized asymmetric exclusion process with \[U_q(sl_2)\] Uq(sl2) stochastic duality. Probab. Theory Relat. Fields 166, 887 (2016) · Zbl 1354.60115 · doi:10.1007/s00440-015-0674-0
[27] Corwin, I., Ferrari, P.L., Péché, S.: Universality of slow decorrelation in KPZ growth. Ann. Inst. H. Poincaré B 48, 134-150 (2012) · Zbl 1247.82041 · doi:10.1214/11-AIHP440
[28] Corwin, I., Petrov, L.: The q-PushASEP: a new integrable model for traffic in \[1+11+1\] dimension. J. Stat. Phys. 160, 1005-1026 (2015) · Zbl 1323.82029 · doi:10.1007/s10955-015-1218-9
[29] Dotsenko, V.: Replica Bethe ansatz derivation of the Tracy-Widom distribution of the free energy fluctuations in one-dimensional directed polymers. J. Stat. Mech. 2010, P07010 (2010)
[30] Ferrari, P.: TASEP hydrodynamics using microscopic characteristics. Probab. Surv. 15, 1-27 (2018) · Zbl 1434.60288 · doi:10.1214/17-PS284
[31] Ferrari, P.A., Fontes, L.R.G.: The net output process of a system with infinitely many queues. Ann. Appl. Probab. 4, 1129-1144 (1994) · Zbl 0812.60081 · doi:10.1214/aoap/1177004907
[32] Ferrari, P.L., Spohn, H.: Scaling limit for the space – time covariance of the stationary totally asymmetric simple exclusion process. Commun. Math. Phys. 265, 1-44 (2006) · Zbl 1118.82032 · doi:10.1007/s00220-006-1549-0
[33] Ferrari, P.L., Spohn, H., Weiss, T.: Brownian motions with one-sided collisions: the stationary case. Electron. J. Probab. 20(69), 1-41 (2015) · Zbl 1327.60188
[34] Ferrari, P.L., Vető, B.: Tracy-Widom asymptotics for q-TASEP. Ann. Inst. H. Poincaré Probab. Stat. 4, 1465-1485 (2015) · Zbl 1376.60080 · doi:10.1214/14-AIHP614
[35] Forrester, P.J.: Log Gases and Random Matrices. Princeton University Press, Princeton (2010) · Zbl 1217.82003
[36] Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732-749 (1977) · doi:10.1103/PhysRevA.16.732
[37] Frobenius, G.: Ueber die elliptischen Functionen zweiter Art. J. für die reine und angew. Math. 93, 732-749 (1882) · JFM 14.0389.01
[38] Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (2004) · Zbl 1129.33005 · doi:10.1017/CBO9780511526251
[39] Goncalves, P.: On the asymmetric zero-range in the rarefaction fan. J. Stat. Phys. 154, 1074-1095 (2014) · Zbl 1291.82083 · doi:10.1007/s10955-013-0892-8
[40] Gwa, L.-H., Spohn, H.: Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. Phys. Rev. Lett. 68, 725-728 (1992) · Zbl 0969.82526 · doi:10.1103/PhysRevLett.68.725
[41] Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2012) · doi:10.1017/CBO9781139020411
[42] Imamura, T., Mucciconi, M., Sasamoto, T.: In preparation
[43] Imamura, T., Sasamoto, T.: Free energy distribution of the stationary O’Connell-Yor polymer model. J. Phys. A 50, 285203 (2017) · Zbl 1372.82047 · doi:10.1088/1751-8121/aa6e17
[44] Imamura, T., Sasamoto, T.: Fluctuations of the one-dimensional polynuclear growth model with external sources. Nucl. Phys. B 699, 503-544 (2004) · Zbl 1123.82352 · doi:10.1016/j.nuclphysb.2004.07.030
[45] Imamura, T., Sasamoto, T.: Current moments of 1D ASEP by duality. J. Stat. Phys. 142, 919-930 (2011) · Zbl 1213.82019 · doi:10.1007/s10955-011-0149-3
[46] Imamura, T., Sasamoto, T.: Exact solution for the stationary KPZ equation. Phys. Rev. Lett. 108, 190603 (2012) · doi:10.1103/PhysRevLett.108.190603
[47] Imamura, T., Sasamoto, T.: Stationary correlations for the 1D KPZ equation. J. Stat. Phys. 150, 908-939 (2013) · Zbl 1266.82045 · doi:10.1007/s10955-013-0710-3
[48] Imamura, T., Sasamoto, T.: Determinantal structures in the O’Connell-Yor directed random polymer model. J. Stat. Phys. 163, 675-713 (2016) · Zbl 1342.82163 · doi:10.1007/s10955-016-1492-1
[49] Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437-476 (2000) · Zbl 0969.15008 · doi:10.1007/s002200050027
[50] Johansson, K.: Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields 123, 225-280 (2002) · Zbl 1008.60019 · doi:10.1007/s004400100187
[51] Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242, 277-329 (2003) · Zbl 1031.60084 · doi:10.1007/s00220-003-0945-y
[52] Kajihara, Y., Noumi, M.: Mutiple elliptic hypergeometric series: an approach from the Cauchy determinant. Indag. Mathem. N.S. 14, 395-421 (2003) · Zbl 1051.33009 · doi:10.1016/S0019-3577(03)90054-1
[53] Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889-892 (1986) · Zbl 1101.82329 · doi:10.1103/PhysRevLett.56.889
[54] Katori, M.: Elliptic determinantal process of type A. Probab. Theory Relat. Fields 162, 637-677 (2015) · Zbl 1416.60081 · doi:10.1007/s00440-014-0581-9
[55] Katori, M.: Elliptic Bessel processes and elliptic Dyson models realized as temporally inhomogeneous processes. J. Math. Phys. 57, 103302 (2016) · Zbl 1351.60108 · doi:10.1063/1.4964253
[56] Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999) · Zbl 0927.60002 · doi:10.1007/978-3-662-03752-2
[57] Ledoux, M.: A Remark on Hypercontractivity and Tail Inequalities for the Largest Eigenvalues of Random Matrices. In: Séminaire de Pobalilités XXXVII, vol. 1832 of Lecture Notes in Mathematics. Springer, Berlin (2003) · Zbl 1045.15012
[58] Liggett, T.M.: An infinite particle system with zero range interactions. Ann. Probab. 1, 240-253 (1973) · Zbl 0264.60083 · doi:10.1214/aop/1176996977
[59] Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985) · Zbl 0559.60078 · doi:10.1007/978-1-4613-8542-4
[60] Liggett, T.M.: Continuous Time Markov Processes: An Introduction (graduate studies in mathematics). American Mathematical Society, Providence (2010) · Zbl 1205.60002 · doi:10.1090/gsm/113
[61] Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1995) · Zbl 0824.05059
[62] Matveev, K., Petrov, L.: \[q\] q-randomized Robinson-Schensted-Knuth correspondences and random polymers. Ann. Inst. Henri Poincaré D 4, 1-123 (2017) · Zbl 1381.60030 · doi:10.4171/AIHPD/36
[63] Mehta, M.L.: Random Matrices, 3rd edn. Elsevier, Amsterdam (2004) · Zbl 1107.15019
[64] O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40, 437-458 (2012) · Zbl 1245.82091 · doi:10.1214/10-AOP632
[65] Orr, D., Petrov, L.: Stochastic higher spin six vertex model and q-TASEPs. Adv. Math. 317, 473-525 (2017) · Zbl 1379.82016 · doi:10.1016/j.aim.2017.07.003
[66] Povolotsky, A.M.: Bethe ansatz solution of zero-range process with nonuniform stationary state. Phys. Rev. E 69, 061109 (2004) · doi:10.1103/PhysRevE.69.061109
[67] Prähofer, M., Spohn, H.: Current fluctuations for the totally asymmetric simple exclusion process. In: Sidoravicius, V. (ed.) In and Out of Equilibrium, vol. 51 of Progress in Probability, pp. 185-204 (2002) · Zbl 1015.60093
[68] Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071-1106 (2002) · Zbl 1025.82010 · doi:10.1023/A:1019791415147
[69] Prähofer, M., Spohn, H.: Exact scaling functions for one-dimensional stationary KPZ growth. J. Stat. Phys. 115, 255-279 (2004) · Zbl 1157.82363 · doi:10.1023/B:JOSS.0000019810.21828.fc
[70] Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York (1980) · Zbl 0459.46001
[71] Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38, L549-L556 (2005) · doi:10.1088/0305-4470/38/33/L01
[72] Sasamoto, T., Spohn, H.: Exact height distributions for the KPZ equation with narrow wedge initial condition. Nucl. Phys. B 834, 523-542 (2010) · Zbl 1204.35137 · doi:10.1016/j.nuclphysb.2010.03.026
[73] Sasamoto, T., Spohn, H.: The crossover regime for the weakly asymmetric simple exclusion process. J. Stat. Phys. 140, 209-231 (2010) · Zbl 1197.82093 · doi:10.1007/s10955-010-9990-z
[74] Sasamoto, T., Spohn, H.: Universality of the one-dimensional KPZ equation. Phys. Rev. Lett. 834, 523-542 (2010) · Zbl 1204.35137
[75] Sasamoto, T., Wadati, M.: Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A 31, 6057-6071 (1998) · Zbl 1085.83501 · doi:10.1088/0305-4470/31/28/019
[76] Schütz, G.M.: Duality relations for asymmetric exclusion processes. J. Stat. Phys. 86, 1265-1287 (1997) · Zbl 0935.82017 · doi:10.1007/BF02183623
[77] Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55, 923-975 (2000) · Zbl 0991.60038 · doi:10.1070/RM2000v055n05ABEH000321
[78] Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991) · Zbl 0742.76002 · doi:10.1007/978-3-642-84371-6
[79] Spohn, H.: KPZ scaling theory and the semi-discrete directed polymer model. In: MSRI proceedings (2013)
[80] Stade, E.: Archimedean \[L\] L-factors on \[\text{ GL }(\text{ n })\times \text{ GL }(\text{ n })\] GL(n)×GL(n) and generalized Barnes integrals. Isr. J. Math. 127, 201-219 (2002) · Zbl 1032.11020 · doi:10.1007/BF02784531
[81] Stanley, R.P.: Enumerative Combinatorics 2. Springer, Berlin (1999) · Zbl 0928.05001 · doi:10.1017/CBO9780511609589
[82] Takeuchi, K.A., Sano, M.: Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence. J. Stat. Phys. 147, 853-890 (2010) · Zbl 1246.82109 · doi:10.1007/s10955-012-0503-0
[83] Takeuchi, K.A., Sano, M.: Growing interfaces of liquid crystal turbulence: universal scaling and fluctuations. Phys. Rev. Lett. 104, 230601 (2010) · doi:10.1103/PhysRevLett.104.230601
[84] Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151-174 (1994) · Zbl 0789.35152 · doi:10.1007/BF02100489
[85] Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727-754 (1996) · Zbl 0851.60101 · doi:10.1007/BF02099545
[86] Tracy, C.A., Widom, H.: Correlation functions, cluster functions, and spacing distributions for random matrices. J. Stat. Phys. 92, 809-835 (1998) · Zbl 0942.60099 · doi:10.1023/A:1023084324803
[87] Tracy, C.A., Widom, H.: Asymptotics in ASEP with step initial condition. Commun. Math. Phys. 209, 129-154 (2009) · Zbl 1184.60036 · doi:10.1007/s00220-009-0761-0
[88] Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1927) · JFM 45.0433.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.