×

\( \mathcal{W} \)-algebra modules, free fields, and Gukov-Witten defects. (English) Zbl 1416.81195

Summary: We study the structure of modules of corner vertex operator algebras arising at junctions of interfaces in \( \mathcal{N}=4 \) SYM. In most of the paper, we concentrate on truncations of \( {\mathcal{W}}_{1+\infty} \) associated to the simplest trivalent junction. First, we generalize the Miura transformation for \( {\mathcal{W}}_{N_1} \) to a general truncation \( {Y}_{N_1,{N}_2,{N}_3} \). Secondly, we propose a simple parametrization of their generic modules, generalizing the Yangian generating function of highest weight charges. Parameters of the generating function can be identified with exponents of vertex operators in the free field realization and parameters associated to Gukov-Witten defects in the gauge theory picture. Finally, we discuss some aspect of degenerate modules. In the last section, we sketch how to glue generic modules to produce modules of more complicated algebras. Many properties of vertex operator algebras and their modules have a simple gauge theoretical interpretation.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
17B69 Vertex operators; vertex operator algebras and related structures

Software:

Mathematica

References:

[1] D. Gaiotto and M. Rapčák, Vertex algebras at the corner, JHEP01 (2019) 160 [arXiv:1703.00982] [INSPIRE]. · Zbl 1409.81148 · doi:10.1007/JHEP01(2019)160
[2] N. Nekrasov and E. Witten, The Ω deformation, branes, integrability and Liouville theory, JHEP09 (2010) 092 [arXiv:1002.0888] [INSPIRE]. · Zbl 1291.81265 · doi:10.1007/JHEP09(2010)092
[3] D. Gaiotto and E. Witten, Knot invariants from four-dimensional gauge theory, Adv. Theor. Math. Phys.16 (2012) 935 [arXiv:1106.4789] [INSPIRE]. · Zbl 1271.81108 · doi:10.4310/ATMP.2012.v16.n3.a5
[4] T. Creutzig and D. Gaiotto, Vertex algebras for S-duality, arXiv:1708.00875 [INSPIRE]. · Zbl 1481.17041
[5] T. Procházka and M. Rapčák, Webs of W-algebras, JHEP11 (2018) 109 [arXiv:1711.06888] [INSPIRE]. · Zbl 1404.81263
[6] A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program, Commun. Num. Theor. Phys.1 (2007) 1 [hep-th/0604151] [INSPIRE]. · Zbl 1128.22013
[7] E. Witten, A new look at the path integral of quantum mechanics, arXiv:1009.6032 [INSPIRE]. · Zbl 1250.81060
[8] E. Witten, Fivebranes and knots, arXiv:1101.3216 [INSPIRE]. · Zbl 1241.57041
[9] V. Mikhaylov and E. Witten, Branes and supergroups, Commun. Math. Phys.340 (2015) 699 [arXiv:1410.1175] [INSPIRE]. · Zbl 1326.81210 · doi:10.1007/s00220-015-2449-y
[10] O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP01 (1998) 002 [hep-th/9710116] [INSPIRE].
[11] D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys.13 (2009) 721 [arXiv:0807.3720] [INSPIRE]. · Zbl 1206.81082
[12] D. Gaiotto and E. Witten, Janus configurations, chern-simons couplings, and the theta-angle in N = 4 super Yang-Mills theory, JHEP06 (2010) 097 [arXiv:0804.2907] [INSPIRE]. · Zbl 1290.81065
[13] D. Gaiotto and E. Witten, Supersymmetric boundary conditions in N = 4 super Yang-Mills theory, J. Statist. Phys.135 (2009) 789 [arXiv:0804.2902] [INSPIRE]. · Zbl 1178.81180
[14] C.N. Pope, L.J. Romans and X. Shen, W∞and the Racah-Wigner algebra, Nucl. Phys.B 339 (1990) 191 [INSPIRE].
[15] C.N. Pope, L.J. Romans and X. Shen, The complete structure of W∞, Phys. Lett.B 236 (1990) 173 [INSPIRE].
[16] C.N. Pope, L.J. Romans and X. Shen, A new higher spin algebra and the lone star product, Phys. Lett.B 242 (1990) 401 [INSPIRE].
[17] V. Kac and A. Radul, Representation theory of the vertex algebra W (1 + ∞), hep-th/9512150 [INSPIRE]. · Zbl 0862.17023
[18] F. Yu and Y.-S. Wu, Nonlinearly deformed W (∞) algebra and second Hamiltonian structure of KP hierarchy, Nucl. Phys.B 373 (1992) 713 [INSPIRE].
[19] J. de Boer, L. Feher and A. Honecker, A class of W algebras with infinitely generated classical limit, Nucl. Phys.B 420 (1994) 409 [hep-th/9312049] [INSPIRE]. · Zbl 0990.81525
[20] B. Khesin and F. Malikov, Universal Drinfeld-Sokolov reduction and matrices of complex size, Commun. Math. Phys.175 (1996) 113 [hep-th/9405116] [INSPIRE]. · Zbl 0846.58027 · doi:10.1007/BF02101626
[21] K. Hornfeck, W algebras of negative rank, Phys. Lett.B 343 (1995) 94 [hep-th/9410013] [INSPIRE].
[22] R. Blumenhagen et al., Coset realization of unifying W algebras, Int. J. Mod. Phys.A 10 (1995) 2367 [hep-th/9406203] [INSPIRE]. · Zbl 1044.81594
[23] M.R. Gaberdiel and R. Gopakumar, Triality in minimal model holography, JHEP07 (2012) 127 [arXiv:1205.2472] [INSPIRE]. · Zbl 1397.81304 · doi:10.1007/JHEP07(2012)127
[24] T. Procházka, ExploringW∞\[ {\mathcal{W}}_{\infty }\] in the quadratic basis, JHEP09 (2015) 116 [arXiv:1411.7697] [INSPIRE].
[25] A.R. Linshaw, Universal two-parameterW∞\[ {\mathcal{W}}_{\infty } \]-algebra and vertex algebras of typeW \[\mathcal{W} \](2, 3, . . . , N), arXiv:1710.02275 [INSPIRE].
[26] O. Schiffmann and E. Vasserot, Cherednik algebras, W algebras and the equivariant cohomology of the moduli space of instantons on A2, arXiv:1202.2756. · Zbl 1284.14008
[27] D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, arXiv:1211.1287 [INSPIRE]. · Zbl 1422.14002
[28] A. Braverman, M. Finkelberg and H. Nakajima, Instanton moduli spaces andW \[\mathcal{W} \]-algebras, arXiv:1406.2381 [INSPIRE]. · Zbl 1435.14001
[29] A. Tsymbaliuk, The affine Yangian ofgl \[1 \mathfrak{g}{\mathfrak{l}}_1\] revisited, Adv. Math.304 (2017) 583 [arXiv:1404.5240] [INSPIRE]. · Zbl 1350.81017
[30] T. Procházka, \[W \mathcal{W} \]-symmetry, topological vertex and affine Yangian, JHEP10 (2016) 077 [arXiv:1512.07178] [INSPIRE]. · Zbl 1390.81252
[31] R.-D. Zhu and Y. Matsuo, Yangian associated with \[2DN=1 \mathcal{N}=1\] SCFT, PTEP2015 (2015) 093A01 [arXiv:1504.04150] [INSPIRE].
[32] M.R. Gaberdiel, R. Gopakumar, W. Li and C. Peng, Higher spins and Yangian symmetries, JHEP04 (2017) 152 [arXiv:1702.05100] [INSPIRE]. · Zbl 1378.81116 · doi:10.1007/JHEP04(2017)152
[33] S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program, hep-th/0612073 [INSPIRE]. · Zbl 1237.14024
[34] M. Bershtein, B. L. Feigin, and G. Merzon, Plane partitions with a “<Emphasis Type=”Italic“>pit”: generating functions and representation theory, arXiv:1512.08779. · Zbl 1430.17044
[35] A. Litvinov and L. Spodyneiko, On W algebras commuting with a set of screenings, JHEP11 (2016) 138 [arXiv:1609.06271] [INSPIRE]. · Zbl 1390.81527 · doi:10.1007/JHEP11(2016)138
[36] V.A. Fateev and S.L. Lukyanov, The models of two-dimensional conformal quantum field theory with Z(n) symmetry, Int. J. Mod. Phys.A 3 (1988) 507 [INSPIRE].
[37] W.Q. Wang, Classification of irreducible modules ofW \[3 {\mathcal{W}}_3\] algebra with c = −2, Commun. Math. Phys.195 (1998) 113 [INSPIRE]. · Zbl 0949.17009
[38] T. Arakawa, C.H. Lam and H. Yamada, Zhu’s algebra, c2-algebra and c2-cofiniteness of parafermion vertex operator algebras, arXiv:1207.3909. · Zbl 1342.17017
[39] V.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys.B 240 (1984) 312 [INSPIRE].
[40] G. Felder, BRST approach to minimal models, Nucl. Phys.B 317 (1989) 215 [Erratum ibid.B 324 (1989) 548] [INSPIRE].
[41] V. Futorny, D. Grantcharov, and L. E. Ramirez, Irreducible generic Gelfand-Tsetlin modules ofgln \[\mathfrak{g}\mathfrak{l}(n) \], SIGMA11 (2015) 018 [arXiv:1409.8413]. · Zbl 1347.17012
[42] D. Gaiotto and J. Teschner, Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I, JHEP12 (2012) 050 [arXiv:1203.1052] [INSPIRE]. · Zbl 1397.81305 · doi:10.1007/JHEP12(2012)050
[43] D. Gaiotto and J. Lamy-Poirier, Irregular singularities in the H3+WZW model, arXiv:1301.5342 [INSPIRE].
[44] M. Rapcak, Y. Soibelman, Y. Yang and G. Zhao, Cohomological Hall algebras, vertex algebras and instantons, arXiv:1810.10402 [INSPIRE]. · Zbl 1508.81977
[45] S. Lukyanov, Quantization of the Gel’fand-Dikii brackets, Funct. Anal. Appl.22 (1988) 255. · Zbl 0703.58022
[46] P. Di Francesco, C. Itzykson and J.B. Zuber, Classical W algebras, Commun. Math. Phys.140 (1991) 543 [INSPIRE]. · Zbl 0752.17026
[47] M. Fukuda, S. Nakamura, Y. Matsuo and R.-D. Zhu, SHcrealization of minimal model CFT: triality, poset and Burge condition, JHEP11 (2015) 168 [arXiv:1509.01000] [INSPIRE].
[48] P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept.223 (1993) 183 [hep-th/9210010] [INSPIRE]. · doi:10.1016/0370-1573(93)90111-P
[49] T. Miwa, M. Jimbo and E. Date, Solitons: differential equations, symmetries and infinite dimensional algebras, Cambridge University Press, Camrbidge U.K. (2000). · Zbl 0986.37068
[50] B. Khesin and I. Zakharevich, Poisson-Lie group of pseudodifferential symbols, Commun. Math. Phys.171 (1995) 475 [hep-th/9312088] [INSPIRE]. · Zbl 0838.58040 · doi:10.1007/BF02104676
[51] T. Procházka, Instanton R-matrix and W-symmetry, arXiv:1903.10372 [INSPIRE]. · Zbl 1431.81126
[52] D. Brungs and W. Nahm, The associative algebras of conformal field theory, Lett. Math. Phys.47 (1999) 379 [hep-th/9811239] [INSPIRE]. · Zbl 1053.81552 · doi:10.1023/A:1007525300192
[53] Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc.9 (1996) 237. · Zbl 0854.17034 · doi:10.1090/S0894-0347-96-00182-8
[54] P. Francesco, P. Mathieu, and D. Sénéchal, Conformal field theory, Springer, Germany (2012). · Zbl 0869.53052
[55] A.R. Linshaw, Invariant theory and the W1+∞algebra with negative integral central charge, arXiv:0811.4067. · Zbl 1244.17016
[56] T. Creutzig and A.R. Linshaw, Cosets of affine vertex algebras inside larger structures, J. Algebra517 (2019) 396 [arXiv:1407.8512] [INSPIRE]. · Zbl 1440.17021 · doi:10.1016/j.jalgebra.2018.10.007
[57] A.R. Linshaw, The structure of the Kac-Wang-Yan algebra, Commun. Math. Phys.345 (2016) 545. · Zbl 1348.17018 · doi:10.1007/s00220-015-2502-x
[58] T. Arakawa, T. Creutzig, K. Kawasetsu and A.R. Linshaw, Orbifolds and cosets of minimalW \[\mathcal{W} \]-algebras, Commun. Math. Phys.355 (2017) 339 [arXiv:1610.09348] [INSPIRE]. · Zbl 1407.17030
[59] V. Kac and A. Radul, Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, Commun. Math. Phys.157 (1993) 429 [hep-th/9308153] [INSPIRE]. · Zbl 0826.17027 · doi:10.1007/BF02096878
[60] K. Hornfeck, W algebras with set of primary fields of dimensions (3, 4, 5) and (3, 4, 5, 6), Nucl. Phys.B 407 (1993) 237 [hep-th/9212104] [INSPIRE]. · Zbl 1043.81566
[61] C. Dong, C.H. Lam and H. Yamada, W-algebras related to parafermion algebras, J. Alg.322 (2009) 2366. · Zbl 1247.17019 · doi:10.1016/j.jalgebra.2009.03.034
[62] K. Thielemans, A Mathematica package for computing operator product expansions, Int. J. Mod. Phys.C 2 (1991) 787 [INSPIRE]. · Zbl 0940.81500
[63] S. Mizoguchi, Determinant formula and unitarity for the W (3) algebra, Phys. Lett.B 222 (1989) 226 [INSPIRE].
[64] K. Mimachi and Y. Yamada, Singular vectors of the virasoro algebra in terms of jack symmetric polynomials, Commun. Math. Phys.174 (1995) 447. · Zbl 0842.17045
[65] H. Awata, Y. Matsuo, S. Odake and J. Shiraishi, Excited states of Calogero-Sutherland model and singular vectors of the W (N ) algebra, Nucl. Phys.B 449 (1995) 347 [hep-th/9503043] [INSPIRE]. · Zbl 0894.17024
[66] B. Feigin and S. Gukov, V OA[M4], arXiv:1806.02470 [INSPIRE].
[67] M.R. Gaberdiel, W. Li, C. Peng and H. Zhang, The supersymmetric affine Yangian, JHEP05 (2018) 200 [arXiv:1711.07449] [INSPIRE]. · Zbl 1391.81161 · doi:10.1007/JHEP05(2018)200
[68] R.E. Borcherds, Vertex algebras, Kac-Moody algebras and the monster, Proc. Nat. Acad. Sci.83 (1986) 3068 [INSPIRE]. · Zbl 0613.17012 · doi:10.1073/pnas.83.10.3068
[69] I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the Monster, Academic Press, U.S.A. (1988). · Zbl 0674.17001
[70] A.A. Belavin et al., Instanton moduli spaces and bases in coset conformal field theory, Commun. Math. Phys.319 (2013) 269 [arXiv:1111.2803] [INSPIRE]. · Zbl 1263.81252 · doi:10.1007/s00220-012-1603-z
[71] M. Bershtein, B. Feigin and A. Litvinov, Coupling of two conformal field theories and Nakajima-Yoshioka blow-up equations, Lett. Math. Phys.106 (2016) 29 [arXiv:1310.7281] [INSPIRE]. · Zbl 1395.17058 · doi:10.1007/s11005-015-0802-x
[72] M.R. Gaberdiel, W. Li and C. Peng, Twin-plane-partitions \[andN=2 \mathcal{N}=2\] affine Yangian, JHEP11 (2018) 192 [arXiv:1807.11304] [INSPIRE]. · Zbl 1405.81053
[73] B. Feigin, M. Jimbo, T. Miwa and E. Mukhin, Branching rules for quantum toroidal gln, Adv. Math.300 (2016) 229 [arXiv:1309.2147] [INSPIRE]. · Zbl 1402.17031
[74] M. Wakimoto, Fock representations of the affine Lie algebra A1(1), Commun. Math. Phys.104 (1986) 605 [INSPIRE]. · Zbl 0587.17009
[75] B.L. Feigin and E.V. Frenkel, Affine Kac-Moody algebras and semiinfinite flag manifolds, Commun. Math. Phys.128 (1990) 161 [INSPIRE]. · Zbl 0722.17019
[76] N. Nekrasov, BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and qq-characters, JHEP03 (2016) 181 [arXiv:1512.05388] [INSPIRE]. · Zbl 1388.81872
[77] N. Nekrasov, BPS/CFT correspondence II: Instantons at crossroads, moduli and compactness theorem, Adv. Theor. Math. Phys.21 (2017) 503 [arXiv:1608.07272] [INSPIRE].
[78] N. Nekrasov and N.S. Prabhakar, Spiked instantons from intersecting D-branes, Nucl. Phys.B 914 (2017) 257 [arXiv:1611.03478] [INSPIRE]. · Zbl 1353.81094
[79] N. Nekrasov, BPS/CFT correspondence III: gauge origami partition function and qq-characters, Commun. Math. Phys.358 (2018) 863 [arXiv:1701.00189] [INSPIRE]. · Zbl 1386.81125
[80] N. Nekrasov, BPS/CFT correspondence IV: σ-models and defects in gauge theory, Lett. Math. Phys.109 (2019) 579 [arXiv:1711.11011] [INSPIRE]. · Zbl 1411.81213
[81] N. Nekrasov, BPS/CFT correspondence V: BPZ and KZ equations from qq-characters, arXiv:1711.11582 [INSPIRE].
[82] N. Nekrasov, Magnificent four, arXiv:1712.08128 [INSPIRE]. · Zbl 1454.05016
[83] N.C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys.2 (1998) 91 [hep-th/9711013] [INSPIRE]. · Zbl 0914.14024 · doi:10.4310/ATMP.1998.v2.n1.a4
[84] E. Frenkel and D. Gaiotto, Quantum Langlands dualities of boundary conditions, D-modules and conformal blocks, arXiv:1805.00203 [INSPIRE]. · Zbl 1445.14024
[85] M. Dedushenko, S. Gukov and P. Putrov, Vertex algebras and 4-manifold invariants, arXiv:1705.01645 [INSPIRE]. · Zbl 1456.58018
[86] A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds, arXiv:1306.4320 [INSPIRE]. · Zbl 1373.81295
[87] E. Witten, Gauge theory and wild ramification, arXiv:0710.0631 [INSPIRE]. · Zbl 1177.81101
[88] J.-t. Ding and K. Iohara, Generalization and deformation of Drinfeld quantum affine algebras, Lett. Math. Phys.41 (1997) 181 [INSPIRE]. · Zbl 0889.17011 · doi:10.1023/A:1007341410987
[89] K. Miki, A (q, γ) analog of the W1+∞algebra, J. Math. Phys.48 (2007) 123520. · Zbl 1153.81405
[90] H. Awata et al., Notes on Ding-Iohara algebra and AGT conjecture, arXiv:1106.4088 [INSPIRE]. · Zbl 1422.17024
[91] H. Awata, B. Feigin and J. Shiraishi, Quantum algebraic approach to refined topological vertex, JHEP03 (2012) 041 [arXiv:1112.6074] [INSPIRE]. · Zbl 1309.81112 · doi:10.1007/JHEP03(2012)041
[92] A. Mironov, A. Morozov and Y. Zenkevich, Ding-Iohara-Miki symmetry of network matrix models, Phys. Lett.B 762 (2016) 196 [arXiv:1603.05467] [INSPIRE]. · Zbl 1390.81216
[93] H. Awata et al., Explicit examples of DIM constraints for network matrix models, JHEP07 (2016) 103 [arXiv:1604.08366] [INSPIRE]. · Zbl 1390.81206
[94] H. Awata et al., Toric Calabi-Yau threefolds as quantum integrable systems. ℛ-matrix andℛTT \[\text{\mathcal{R}}\mathcal{T}\mathcal{T}\] relations, JHEP10 (2016) 047 [arXiv:1608.05351] [INSPIRE].
[95] H. Awata et al., Anomaly in RTT relation for DIM algebra and network matrix models, Nucl. Phys.B 918 (2017) 358 [arXiv:1611.07304] [INSPIRE].
[96] J.-E. Bourgine et al., Coherent states in quantumW1+∞\[ {\mathcal{W}}_{1+\infty }\] algebra and qq-character for 5d Super Yang-Mills, PTEP2016 (2016) 123B05 [arXiv:1606.08020] [INSPIRE].
[97] J.-E. Bourgine et al., (p, q)-webs of DIM representations, \[5dN=1 \mathcal{N}=1\] instanton partition functions and qq-characters, JHEP11 (2017) 034 [arXiv:1703.10759] [INSPIRE]. · Zbl 1383.83156
[98] A. Smirnov, On the instanton R-matrix, Commun. Math. Phys.345 (2016) 703 [arXiv:1302.0799] [INSPIRE]. · Zbl 1345.81056 · doi:10.1007/s00220-016-2686-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.