×

Constrained spline regression in the presence of AR(\(p\)) errors. (English) Zbl 1416.62231

Summary: Extracting the trend from the pattern of observations is always difficult, especially when the trend is obscured by correlated errors. Often, prior knowledge of the trend does not include a parametric family, and instead the valid assumptions are vague, such as ‘smooth’ or ‘monotone increasing’. Incorrectly specifying the trend as some simple parametric form can lead to overestimation of the correlation. The proposed method uses spline regression with shape constraints, such as monotonicity or convexity, for estimation and inference in the presence of stationary AR(\(p\)) errors. Standard criteria for selection of penalty parameter, such as Akaike information criterion (AIC), cross-validation and generalised cross-validation, have been shown to behave badly when the errors are correlated and in the absence of shape constraints. In this article, correlation structure and penalty parameter are selected simultaneously using a correlation-adjusted AIC. The asymptotic properties of unpenalised spline regression in the presence of correlation are investigated. It is proved that even if the estimation of the correlation is inconsistent, the corresponding projection estimation of the regression function can still be consistent and have the optimal asymptotic rate, under appropriate conditions. The constrained spline fit attains the convergence rate of unconstrained spline fit in the presence of AR(\(p\)) errors. Simulation results show that the constrained estimator typically behaves better than the unconstrained version if the true trend satisfies the constraints.

MSC:

62G08 Nonparametric regression and quantile regression
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI

References:

[1] DOI: 10.1080/00949659208811368 · Zbl 0775.62085 · doi:10.1080/00949659208811368
[2] DOI: 10.1080/01621459.1990.10474936 · doi:10.1080/01621459.1990.10474936
[3] Brockwell P., Time Series: Theory and Methods, Springer Series in Statistics (2009) · Zbl 1169.62074
[4] DOI: 10.1214/aoms/1177728420 · Zbl 0066.38503 · doi:10.1214/aoms/1177728420
[5] DOI: 10.1093/biomet/asp035 · Zbl 1170.62031 · doi:10.1093/biomet/asp035
[6] DOI: 10.1111/j.1467-842X.1989.tb00510.x · Zbl 0707.62080 · doi:10.1111/j.1467-842X.1989.tb00510.x
[7] DOI: 10.1214/ss/1038425655 · Zbl 0955.62562 · doi:10.1214/ss/1038425655
[8] DOI: 10.1002/cjs.5550330208 · Zbl 1071.62035 · doi:10.1002/cjs.5550330208
[9] Fuller W., Introduction to Statistical Time Series, Wiley Series in Probability and Statistics (1996) · Zbl 0851.62057
[10] DOI: 10.1214/aos/1009210683 · Zbl 1012.62030 · doi:10.1214/aos/1009210683
[11] DOI: 10.1111/1467-9868.00395 · Zbl 1065.62067 · doi:10.1111/1467-9868.00395
[12] DOI: 10.1093/biomet/92.1.105 · Zbl 1068.62045 · doi:10.1093/biomet/92.1.105
[13] DOI: 10.1073/pnas.0606291103 · doi:10.1073/pnas.0606291103
[14] Hart J.D., Journal of the Royal Statistical Society. Series B (Methodological) 53 (1) pp 173– (1991)
[15] Hart J.D., Journal of the Royal Statistical Society. Series B (Methodological) 56 (3) pp 529– (1994)
[16] DOI: 10.1214/aos/1030563984 · Zbl 0930.62042 · doi:10.1214/aos/1030563984
[17] Kauermann G., Journal of the Royal Statistical Society, Series B: Statistical Methodology 71 (2) pp 487– (2009)
[18] DOI: 10.1016/j.jmva.2008.12.012 · Zbl 1162.62033 · doi:10.1016/j.jmva.2008.12.012
[19] DOI: 10.1093/biomet/asn010 · Zbl 1437.62540 · doi:10.1093/biomet/asn010
[20] DOI: 10.1214/08-AOAS167 · Zbl 1149.62033 · doi:10.1214/08-AOAS167
[21] DOI: 10.1002/cjs.10137 · Zbl 1236.62033 · doi:10.1002/cjs.10137
[22] DOI: 10.1080/03610918.2012.659820 · Zbl 1347.62013 · doi:10.1080/03610918.2012.659820
[23] DOI: 10.1214/ss/1009213287 · Zbl 1059.62537 · doi:10.1214/ss/1009213287
[24] Robertson T., Order Restricted Statistical Inference (1988) · Zbl 0645.62028
[25] DOI: 10.1017/CBO9780511755453 · Zbl 1038.62042 · doi:10.1017/CBO9780511755453
[26] Silvapulle M., Constrained Statistical Inference: Order, Inequality, and Shape Constraints, Wiley Series in Probability and Statistics (2004)
[27] DOI: 10.1214/aos/1176345969 · Zbl 0511.62048 · doi:10.1214/aos/1176345969
[28] DOI: 10.1016/0378-3758(92)00151-S · Zbl 0814.62042 · doi:10.1016/0378-3758(92)00151-S
[29] DOI: 10.1080/01621459.1998.10474115 · doi:10.1080/01621459.1998.10474115
[30] DOI: 10.1175/1520-0442(1993)006<0953:GWATPO>2.0.CO;2 · doi:10.1175/1520-0442(1993)006<0953:GWATPO>2.0.CO;2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.