×

Study a class of nonlinear fractional non-autonomous evolution equations with delay. (English) Zbl 1416.34055

Summary: In this paper, we deal with a class of nonlinear fractional non-autonomous evolution equations with delay by using Hilfer fractional derivative, which generalized the famous Riemann-Liouville fractional derivative. Combining techniques of fractional calculus, measure of noncompactness and some fixed point theorem, we obtain new existence result of mild solutions when the associated semigroup is not compact. Furthermore, the assumptions that the nonlinear term satisfies some growth condition and noncompactness measure condition. The results obtained improve and extend some related conclusions. Finally, two examples will be presented to illustrate the main results.

MSC:

34K30 Functional-differential equations in abstract spaces
47D06 One-parameter semigroups and linear evolution equations
37C60 Nonautonomous smooth dynamical systems
Full Text: DOI

References:

[1] Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Contemporary Mathematics and its Applications, vol. 2. Hindawi Publishing Corporation, Cairo, Egypt (2006) · Zbl 1130.34003
[2] Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence result for boundary value problem of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973-1033 (2010) · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6
[3] Ahmad, B., Sivasundaram, S.: Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations. Nonlinear Anal. Hybrid Syst. 3, 251-258 (2009) · Zbl 1193.34056 · doi:10.1016/j.nahs.2009.01.008
[4] Benchohra, M., Seba, D.: Impulsive fractional differential equations in Banach spaces. Electron. J. Qual. Theory Differ. Equ. 8, 1-14 (2009) · Zbl 1189.26005 · doi:10.14232/ejqtde.2009.4.8
[5] Balachandran, K., Kiruthika, S.: Existence of solutions of abstract fractional impulsive semilinear evolution equations. Electron. J. Qual. Theory Differ. Equ. 4, 1-12 (2010) · Zbl 1201.34091 · doi:10.14232/ejqtde.2010.1.4
[6] Banaś, J., Goebel, K.: Measure of noncompactness in Banach spaces. In: Lectures Notes in Pure and Applied Mathematics, vol. 60. Marcel Pekker, New York (1980) · Zbl 0441.47056
[7] Aghajani, A., Banaś, J., Sabzali, N.: Some generalizations of Darbo fixed point theorem and application. Bull. Belg. Math. Soc. Simon Stevin 20(2), 345-358 (2013) · Zbl 1290.47053
[8] Lakzian, H., Gopal, D., Sintunavarat, W.: New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations. J. Fixed Point Theory Appl. https://doi.org/10.1007/s11874-015-0275-7 · Zbl 1349.54108
[9] Shu, X.B., Wang, Q.Q.: The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order \[1<\alpha <21\]<α<2. Comput. Math. Appl. 64, 2100-2110 (2012) · Zbl 1268.34155 · doi:10.1016/j.camwa.2012.04.006
[10] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983) · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[11] Wang, J., Feckan, M., Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Partial Differ. Equ. 8, 345-361 (2011) · Zbl 1264.34014 · doi:10.4310/DPDE.2011.v8.n4.a3
[12] Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its applications to a fractional differential equation. J. Math. Anal. Appl 328, 1075-1081 (2007) · Zbl 1120.26003 · doi:10.1016/j.jmaa.2006.05.061
[13] Wang, J., Zhou, Y., Fec̆kan, M.: Alternative results and robustness for fractional evolution equations with periodic boundary conditions. Electron. J. Qual. Theory Differ. Equ. 97, 1-15 (2011) · Zbl 1340.34207
[14] Wang, J., Zhou, Y., Feckan, M.: Abstract Cauchy problem for fractional differential equations. Nonlinear Dyn. 74, 685-700 (2013) · Zbl 1268.34034 · doi:10.1007/s11071-012-0452-9
[15] Chen, P.Y., Li, Y.X., Chen, Q.Y., Feng, B.H.: On the initial value problem of fractional evolution equations with noncompact semigroup. Comput. Math. Appl. 67, 1108-1115 (2014) · Zbl 1381.34011 · doi:10.1016/j.camwa.2014.01.002
[16] El-Borai, M.M.: The fundamental solutions for fractional evolution equations of parabolic type. J. Appl. Math. Stoch. Anal. 3, 197-211 (2004) · Zbl 1081.34053 · doi:10.1155/S1048953304311020
[17] Chen, P.Y., Zhang, X.P., Li, Y.: Study on fractiona non-autonomous evolution equations with delay. Comput. Math. Appl. 73(5), 794-803 (2017) · Zbl 1375.34115 · doi:10.1016/j.camwa.2017.01.009
[18] Agarwal, P., Berdyshev, A.S., Karimov, E.T.: Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative. Results Math. 71(3-4), 1235-1257 (2017) · Zbl 1375.35282 · doi:10.1007/s00025-016-0620-1
[19] Wang, G., Zhang, L., Song, G.: Systems of first order impulsive functional differential equations with deviating arguments and nonlinear boundary conditions. Nonlinear Anal. Theory Methods Appl. 74, 974-982 (2011) · Zbl 1223.34091 · doi:10.1016/j.na.2010.09.054
[20] Wang, J.R., Zhou, Y., Fec̆kan, M.: On recent developments in the theory of boundary value problems for impulsive fractional differentail equations. Comput. Math. Appl. 64, 3008-3020 (2012) · Zbl 1268.34032 · doi:10.1016/j.camwa.2011.12.064
[21] Wang, J.R., Fec̆kan, M., Zhou, Y.: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395, 258-264 (2012) · Zbl 1254.34022 · doi:10.1016/j.jmaa.2012.05.040
[22] Wang, J.R., Li, X., Wei, W.: On the natural solution of an impulsive fractional differential equation of order \[q\in (1,2)\] q∈(1,2). Commun. Nonlinear Sci. Numer. Simul. 17, 4384-4394 (2012) · Zbl 1248.35226 · doi:10.1016/j.cnsns.2012.03.011
[23] Fec̆kan, M., Zhou, Y., Wang, J.R.: On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3050-3060 (2012) · Zbl 1252.35277 · doi:10.1016/j.cnsns.2011.11.017
[24] Wang, G., Ahmad, B., Zhang, L., Nieto, J.J.: Comments on the concept of existence of solution for impulsive fractional differentail equations. Commun. Nonlinear Sci. Numer. Simul. 19, 401-403 (2014) · Zbl 1470.34031 · doi:10.1016/j.cnsns.2013.04.003
[25] Zhou, W.X., Chu, Y.D.: Existence of solutions for fractional differential equations with multi-point boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 17, 1142-1148 (2012) · Zbl 1245.35153 · doi:10.1016/j.cnsns.2011.07.019
[26] Bai, Z.B., Du, X.Y., Yin, C.: Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions. Bound. Value Probl. 63, 1-11 (2016) · Zbl 1407.34006
[27] Rashid, M.H.M., Al-Omari, A.: Local and global existence of mild solutions for impulsive fractional semilinear integro-differential equation. Commun. Nonlinear Sci. Numer. Simul. 16, 3493-503 (2011) · Zbl 1223.45009 · doi:10.1016/j.cnsns.2010.12.043
[28] Gou, H.D., Li, B.L.: Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup. Commun. Nonlinear Sci. Numer. Simul. 42, 204-214 (2017) · Zbl 1473.34046 · doi:10.1016/j.cnsns.2016.05.021
[29] Yu, X.L., Wang, J.R.: Periodic BVPs for fractional order impulsive evolution equations. Bound. Value Probl. 35 (2014) · Zbl 1306.34018
[30] Chadha, A., Pandey, D.N.: Existence results for an impulsive neutral fractional integro differential equation with infinite delay. Int. J. Differ. Equ. 2014, 10, Article ID 780636 · Zbl 1328.34074
[31] Wang, J., Fec̆kan, M., Zhou, Y.: Relaxed controls for nonlinear frational impulsive evolution equations. J. Optim. Theory Appl. 156, 13-32 (2013) · Zbl 1263.49038 · doi:10.1007/s10957-012-0170-y
[32] Li, F., Liang, J., Xu, H.K.: Existence of mild solutions for fractioanl integrodifferential equations of Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 391, 510-525 (2012) · Zbl 1242.45009 · doi:10.1016/j.jmaa.2012.02.057
[33] Yang, M., Wang, Q.: Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 20(3), 679-705 (2017) · Zbl 1368.34017 · doi:10.1515/fca-2017-0036
[34] Tariboon, J., Ntouyas, S.K., Agarwal, P.: New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, 18 (2015) · Zbl 1346.39012 · doi:10.1186/s13662-014-0348-8
[35] Zhang, X., Agarwal, P., Liu, Z., Peng, H.: The general solution for impulsive differential equations with Riemann-Liouville fractional-order \[q\in (1, 2)\] q∈(1,2). Open Math. 13(1), 908-930 (2015) · Zbl 1350.34017 · doi:10.1515/math-2015-0073
[36] Hilfer, R.: Applications of Fractional Caiculus in Physics. World Scientific, Singapore (2000) · Zbl 0998.26002 · doi:10.1142/3779
[37] Furati, K.M., Kassim, M.D., Tatar, Ne-: Existence and uniqueness for a problem involving Hilfer factional derivative. Comput. Math. Appl. 64, 1612-1626 (2012) · Zbl 1268.34013 · doi:10.1016/j.camwa.2012.01.009
[38] Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfre fractional derivative. Appl. Math. Comput. 257, 344-354 (2015) · Zbl 1338.34014
[39] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[40] Li, Y.X.: The positive solutions of abstract semilinear evolution equations and their applications. Acta Math. Sin. 39(5), 666-672 (1996). (in Chinese) · Zbl 0870.47040
[41] Guo, D.J., Sun, J.X.: Ordinary Differential Equations in Abstract Spaces. Shandong Science and Technology, Jinan (1989). (in Chinese)
[42] Heinz, H.R.: On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 71, 1351-1371 (1983) · Zbl 0528.47046 · doi:10.1016/0362-546X(83)90006-8
[43] Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985) · Zbl 0559.47040 · doi:10.1007/978-3-662-00547-7
[44] Sun, J., Zhang, X.: The fixed point theorem of convex-power condensing operator and applications to abstract semilinear evolution equations. Acta Math. Sin. 48, 439-446 (2005). (in Chinese) · Zbl 1124.34342
[45] Liang, J., Xiao, T.J.: Abstract degenerate Cauchy problems in locally convex spaces. J. Math. Anal. Appl. 259, 398-412 (2001) · Zbl 1004.34043 · doi:10.1006/jmaa.2000.7406
[46] Zhou, Y., Zhang, L., Shen, X.H.: Existence of mild solutions for fractioanl evolution equations. J. Integral Equ. Appl. 25, 557-586 (2013) · Zbl 1304.34013 · doi:10.1216/JIE-2013-25-4-557
[47] Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution eqautions. Nonlinear Anal. Real World Appl. 5, 4465-4475 (2010) · Zbl 1260.34017 · doi:10.1016/j.nonrwa.2010.05.029
[48] Mainardi, F.; Paradisi, P.; Gorenflo, R.; Kertesz, I. (ed.); Kondor, I. (ed.), Probability distributions generated by fractional diffusion equations (2000), Dordrecht
[49] Ouyang, Z.: Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay. Comput. Math. Appl. 61, 860-870 (2011) · Zbl 1217.35206 · doi:10.1016/j.camwa.2010.12.034
[50] Zhu, B., Liu, L., Wu, Y.: Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay. Comput. Math. Appl. (2016). https://doi.org/10.1016/j.camwa.2016.01.028 · Zbl 1355.35196
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.