×

Linking Lie groupoid representations and representations of infinite-dimensional Lie groups. (English) Zbl 1416.22022

In this paper, the authors show that smooth representations of Lie groupoids produce representations of associated Lie groups. These groups are the bisection group and a group of groupoid self-maps.
So, representations of the Lie groupoids produce representations of the infinite-dimensional Lie groups on spaces of (compactly supported) bundle sections. Endowing the spaces of bundle sections with a fine Whitney type topology, the authors obtain indeed continuous and smooth representations.
In the topological category, this correspondence can be reversed for certain topological groupoids. The authors extend this result to the smooth category under weaker assumptions on the groupoids.

MSC:

22E66 Analysis on and representations of infinite-dimensional Lie groups
22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
22A22 Topological groupoids (including differentiable and Lie groupoids)
58D15 Manifolds of mappings

References:

[1] Abbati, M.C., Cirelli, R., Manià, A., Michor, P.: The Lie group of automorphisms of a principal bundle. J. Geom. Phys. 6(2), 215-235 (1989) · Zbl 0692.58010 · doi:10.1016/0393-0440(89)90015-6
[2] Adem, A., Leida, J., Ruan, Y.: Orbifolds and Stringy Topology, Cambridge Tracts in Mathematics, vol. 171. Cambridge University Press, Cambridge (2007) · Zbl 1157.57001 · doi:10.1017/CBO9780511543081
[3] Amiri, H.: A group of continuous self-maps on a topological groupoid. Semigr. Forum 96(1), 69-80 (2018) · Zbl 1393.22002 · doi:10.1007/s00233-017-9857-6
[4] Alzaareer, H., Schmeding, A.: Differentiable mappings on products with different degrees of differentiability in the two factors. Expo. Math. 33(2), 184-222 (2015) · Zbl 1330.46039 · doi:10.1016/j.exmath.2014.07.002
[5] Amiri, H., Schmeding, A.: A differentiable monoid of smooth maps on Lie groupoids (2017). arXiv:1706.04816v1 · Zbl 1436.58015
[6] Bastiani, A.: Applications différentiables et variétés différentiables de dimension infinie. J. Anal. Math. 13, 1-114 (1964) · Zbl 0196.44103 · doi:10.1007/BF02786619
[7] Bertram, W., Glöckner, H., Neeb, K.-H.: Differential calculus over general base fields and rings. Expo. Math. 22(3), 213-282 (2004) · Zbl 1099.58006 · doi:10.1016/S0723-0869(04)80006-9
[8] Bkouche, R.: Idéaux mous d’un anneau commutatif. Applications aux anneaux de fonctions. C. R. Acad. Sci. Paris 260, 6496-6498 (1965) · Zbl 0142.28901
[9] Bos, R.: Geometric quantization of Hamiltonian actions of Lie algebroids and Lie groupoids. Int. J. Geom. Methods Mod. Phys. 4(3), 389-436 (2007) · Zbl 1140.22002 · doi:10.1142/S0219887807002077
[10] Bos, R.: Continuous representations of groupoids. Houst. J. Math. 37(3), 807-844 (2011) · Zbl 1257.22006
[11] Crainic, M., Salazar, M.A., Struchiner, I.: Multiplicative forms and Spencer operators. Math. Z. 279(3-4), 939-979 (2015) · Zbl 1408.58015 · doi:10.1007/s00209-014-1398-z
[12] Gelfand, I., Graev, M., Vers̆ik, A.: Representation of a group of smooth mappings of a manifold \[x\] x into a compact lie group. Compos. Math. 35, 299-334 (1977) · Zbl 0368.53034
[13] Glöckner, H.; Strasburger, A. (ed.); Hilgert, J. (ed.); Neeb, K. (ed.); Wojtyński, W. (ed.), Infinite-dimensional Lie groups without completeness restrictions, No. 55, 43-59 (2002), Warsaw · Zbl 1020.58009
[14] Glöckner, H.: Fundamentals of submersions and immersions between infinite-dimensional manifolds (2016). arXiv:1502.05795v4
[15] Grabowski, J.: Isomorphisms of algebras of smooth functions revisited. Arch. Math. (Basel) 85(2), 190-196 (2005) · Zbl 1082.46020 · doi:10.1007/s00013-005-1268-3
[16] Guillemin, V., Sternberg, S.: Deformation theory of pseudogroup structures. Mem. Am. Math. Soc. No. 64, 80 (1966) · Zbl 0169.53001
[17] Gracia-Saz, A., Mehta, R.A.: \[ \cal{VB}\] VB-groupoids and representation theory of Lie groupoids. J. Symplectic Geom. 15(3), 741-783 (2017) · Zbl 1387.18009 · doi:10.4310/JSG.2017.v15.n3.a5
[18] Hjelle, E.O., Schmeding, A.: Strong topologies for spaces of smooth maps with infinite-dimensional target. Expo. Math. 35(1), 13-53 (2017) · Zbl 1379.58004 · doi:10.1016/j.exmath.2016.07.004
[19] Kriegl, A., Michor, P.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997) · Zbl 0889.58001 · doi:10.1090/surv/053
[20] Kosmann, Y.: On Lie transformation groups and the covariance of differential operators. Math. Phys. Appl. Math. 3, 75-89 (1976) · Zbl 0344.58020
[21] Kosmann-Schwarzbach, Y.; Mackenzie, KCH; Voronov, T. (ed.), Differential operators and actions of Lie algebroids, No. 315, 213-233 (2002), Providence, RI · Zbl 1040.17020 · doi:10.1090/conm/315/05482
[22] Lorenz, A.: Jet Groupoids, Natural Bundles and the Vessiot Equivalence Method. Ph.D. thesis, RWTH Aachen (2009). urn:nbn:de:hbz:82-opus-27635
[23] Mackenzie, K.C.H.: General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society Lecture Note Series, vol. 213. Cambridge University Press, Cambridge (2005) · Zbl 1078.58011
[24] Michor, P.W.: Manifolds of Differentiable Mappings, Shiva Mathematics Series, vol. 3. Shiva Publishing Ltd., Nantwich (1980) · Zbl 0433.58001
[25] Michor, P.: Manifolds of smooth maps. IV. Theorem of de Rham. Cah. Topol. Géom. Différ. 24(1), 57-86 (1983) · Zbl 0508.58012
[26] Mrcun, J.: On isomorphisms of algebras of smooth functions. Proc. Am. Math. Soc. 133(10), 3109-3113 (2005) · Zbl 1077.58005 · doi:10.1090/S0002-9939-05-07979-7
[27] Neeb, K.-H.: Towards a Lie theory of locally convex groups. Jpn. J. Math. 1(2), 291-468 (2006) · Zbl 1161.22012 · doi:10.1007/s11537-006-0606-y
[28] Neeb, K.-H.: Lie group extensions associated to projective modules of continuous inverse algebras. Arch. Math. (Brno) 44(5), 465-489 (2008) · Zbl 1212.22009
[29] Neeb, K.-H.: On differentiable vectors for representations of infinite dimensional Lie groups. J. Funct. Anal. 259(11), 2814-2855 (2010) · Zbl 1204.22016 · doi:10.1016/j.jfa.2010.07.020
[30] Nestruev, J.: Smooth Manifolds and Observables, Graduate Texts in Mathematics, vol. 220. Springer, New York 2003). Joint work of Astashov, A. M., Bocharov, A. B., Duzhin, S. V., Sossinsky, A. B., Vinogradov, A. M., Vinogradov, M. M · Zbl 1021.58001
[31] Renault, J.: A Groupoid Approach to \[C^{\ast } C\]*-algebras. Lecture Notes in Mathematics, vol. 793. Springer, Berlin (1980) · Zbl 0433.46049
[32] Rybicki, T.: A Lie group structure on strict groups. Publ. Math. Debr. 61(3-4), 533-548 (2002) · Zbl 1062.22039
[33] Salazar, M.A.: Pfaffian groupoids. Ph.D. thesis, Utrecht University (2013). Cf. http://arxiv.org/pdf/1306.1164v2
[34] Schmeding, A., Wockel, C.: The Lie group of bisections of a Lie groupoid. Ann. Glob. Anal. Geom. 48(1), 87-123 (2015) · Zbl 1318.22002 · doi:10.1007/s10455-015-9459-z
[35] Schmeding, A., Wockel, C.: Functorial aspects of the reconstruction of Lie groupoids from their bisections. J. Aust. Math. Soc. 101(2), 253-276 (2016) · Zbl 1416.58009 · doi:10.1017/S1446788716000021
[36] Schmeding, A., Wockel, C.: (Re)constructing Lie groupoids from their bisections and applications to prequantisation. Differ. Geom. Appl. 49, 227-276 (2016) · Zbl 1358.58011 · doi:10.1016/j.difgeo.2016.07.009
[37] Westman, J.J.: Locally trivial \[C^rCr\] groupoids and their representations. Pac. J. Math. 20, 339-349 (1967) · Zbl 0155.49805 · doi:10.2140/pjm.1967.20.339
[38] Yudilevich, O.: Lie Pseudogroups à la Cartan from a Modern Perspective. Ph.D. thesis, Utrecht University (2016). https://dspace.library.uu.nl/handle/1874/339516 · Zbl 1335.22005
[39] Zhuo Chen, Z.-J .L., Zhong, D.-S.: On the existence of global bisections of lie groupoids. Acta Math. Sin. Engl. Ser. 25(6), 1001-1014 (2009) · Zbl 1221.58015 · doi:10.1007/s10114-009-6242-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.