×

On configuration spaces and Whitehouse’s lifts of the Eulerian representations. (English) Zbl 1416.05293

Summary: S. Whitehouse’s lifts of the Eulerian representations of \(\mathfrak{S}_n\) to \(\mathfrak{S}_{n + 1}\) [S. Whitehouse, J. Pure Appl. Algebra 115, No. 3, 309–320 (1997; Zbl 0870.20013)] are reinterpreted, topologically and ring-theoretically, building on the first author’s work [“Honeycomb tessellations and canonical bases for permutohedral blades”, Preprint, arXiv:1810.03246].

MSC:

05E10 Combinatorial aspects of representation theory
55R80 Discriminantal varieties and configuration spaces in algebraic topology
20C30 Representations of finite symmetric groups

Citations:

Zbl 0870.20013

References:

[1] Barcelo, H.; Goupil, A., Non-broken circuits of reflection groups and factorization in \(D_n\), Isr. J. Math., 91, 285-306 (1995) · Zbl 0839.20053
[2] Barr, M., Harrison homology, Hochschild homology and triples, J. Algebra, 8, 314-323 (1968) · Zbl 0157.04502
[3] Cohen, F. L.; Lada, T. J.; May, J. P., The Homology of Iterated Loop Spaces, Lect. Notes Math., vol. 533 (1976), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0334.55009
[4] Early, N., Canonical bases for permutohedral plates (2017), preprint
[5] Early, N., Honeycomb tessellations and canonical bases for permutohedral blades (2018), preprint
[6] d’Antonio, G.; Gaiffi, G., Symmetric group actions on the cohomology of configurations in \(R^d\), Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., 21, 235-250 (2010) · Zbl 1229.20009
[7] Gerstenhaber, M.; Schack, S., A Hodge-type decomposition for commutative algebra cohomology, J. Pure Appl. Algebra, 48, 3, 229-247 (1987) · Zbl 0671.13007
[8] Getzler, E.; Kapranov, M. M., Cyclic operads and cyclic homology, (Geometry, Topology, & Physics. Geometry, Topology, & Physics, Conf. Proc. Lecture Notes Geom. Topol., vol. IV (1995), Int. Press: Int. Press Cambridge, MA), 167-201 · Zbl 0883.18013
[9] Hanlon, P., The action of \(S_n\) on the components of the Hodge decomposition of Hochschild homology, Mich. Math. J., 37, 105-124 (1990) · Zbl 0701.16010
[10] Mathieu, O., The symplectic operad, (Functional Analysis on the Eve of the 21st Century, vol. 1. Functional Analysis on the Eve of the 21st Century, vol. 1, New Brunswick, NJ, 1993. Functional Analysis on the Eve of the 21st Century, vol. 1. Functional Analysis on the Eve of the 21st Century, vol. 1, New Brunswick, NJ, 1993, Prog. Math., vol. 131 (1995), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 223-243 · Zbl 0857.58043
[11] Mathieu, O., Hidden \(\Sigma_{n + 1}\)-actions, Commun. Math. Phys., 176, 467-474 (1996) · Zbl 0858.58016
[12] Moseley, D.; Proudfoot, N.; Young, B., The Orlik-Terao algebra and the cohomology of configuration space, Exp. Math., 26, 373-380 (2017) · Zbl 1373.52030
[13] Orlik, P.; Terao, H., Commutative algebras for arrangements, Nagoya Math. J., 134, 65-73 (1994) · Zbl 0801.05019
[14] Reutenauer, C., Free Lie Algebras, Lond. Math. Soc. Monogr., New Ser., vol. 7 (1993), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York, Oxford Science Publications · Zbl 0798.17001
[15] Stanley, R. P., Enumerative Combinatorics, vol. 2, Camb. Stud. Adv. Math., vol. 62 (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0928.05001
[16] Sundaram, S., Homotopy of non-modular partitions and the Whitehouse module, J. Algebraic Comb., 9, 251-269 (1999) · Zbl 0930.05099
[17] Sundaram, S., Variations on the \(S_n\)-module \(Lie_n (2018)\), preprint
[18] Sundaram, S.; Welker, V., Group actions on arrangements of linear subspaces and applications to configuration spaces, Trans. Am. Math. Soc., 349, 1389-1420 (1997) · Zbl 0945.05067
[19] Robinson, A.; Whitehouse, S., The tree representation of \(S_{n + 1}\), J. Pure Appl. Algebra, 111, 245-253 (1996) · Zbl 0865.55010
[20] Whitehouse, S., The Eulerian representations of \(S_n\) as restrictions of representations of \(S_{n + 1}\), J. Pure Appl. Algebra, 115, 309-320 (1997) · Zbl 0870.20013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.