×

Combined effect of environmental temperature and density-dependent processes on the evolution of seasonal metabolic rate patterns. (English) Zbl 1415.92207

Summary: Species exhibit large diversity in their seasonal metabolic patterns which are traditionally explained by habitat specific seasonal temperature changes and various thermoregulatory adaptations. However, due to seasonal changes in resource abundances, density-dependent, ecological processes can also be important selective forces shaping the evolution of metabolic patterns. In the present theoretical study, the combined effect of environmental temperature and resource availability on the evolutionarily stable metabolic strategies is investigated in a consumer-resource model. Our results suggest that, under a broad range of circumstances, density-dependent mechanisms favor the selection of active metabolic regulation, where the metabolic rate differs from the thermally optimal value. This effect may be temporary, limited only to a brief period at seasonal changes, or permanent depending on the implied energetic cost and the relative timescale of environmental changes as compared to the generation time.

MSC:

92D40 Ecology
Full Text: DOI

References:

[1] Addo-Bediako, A.; Chown, S. L.; Gaston, K. J., Metabolic cold adaptation in insects: a large-scale perspective, Funct. Ecol., 16, 3, 332-338 (2002)
[2] Anderson, K. J.; Jetz, W., The broad-scale ecology of energy expenditure of endotherms, Ecol. Lett., 8, 3, 310-318 (2005)
[3] Brown, J. H.; Gillooly, J. F.; Allen, A. P.; Savage, V. M.; West, G. B., Toward a metabolic theory of ecology, Ecology, 85, 7, 1771-1789 (2004)
[4] Chown, S. L., Physiological variation in insects: hierarchical levels and implications, J. Insect Physiol., 47, 7, 649-660 (2001)
[5] Clarke, A., Costs and consequences of evolutionary temperature adaptation, Trends Ecol. Evol., 18, 11, 573-581 (2003)
[6] Clarke, A.; Pörtner, H.-O., Temperature, metabolic power and the evolution of endothermy, J. Comp. Physiol. B, 85, 4, 703-727 (2010)
[7] Elgar, M. A.; Harvey, P. H., Basal metabolic rates in mammals: allometry, phylogeny and ecology, Funct. Ecol., 1, 1, 25-36 (1987)
[8] Fishman, A. P.; Pack, A. I.; Delaney, R. G.; Galante, R. J., Estivation in protopterus, (Bemis, W. E.; Burggren, W. W.; Kemp, N. E., The Biology and Evolution of Lungfishes (1987), Alan R. Liss, Inc.), 237-248
[9] Fox, J. W., Testing a simple rule for dominance in resource competition, Am. Nat., 159, 3, 305-319 (2002)
[10] Geiser, F., Metabolic rate and body temperature reduction during hibernation and daily torpor, Annu. Rev. Physiol., 66, 1, 239-274 (2004)
[11] Geiser, F.; Ruf, T., Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns, Physiol. Zool., 68, 6, 935-966 (1995)
[12] Geritz, S. A.H.; É, Kisdi.; Meszéna, G.; Metz, J. A.J., Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12, 1, 35-57 (1998)
[13] Gillooly, J. F.; Brown, J. H.; West, G. B.; Savage, V. M.; Charnov, E. L., Effects of size and temperature on metabolic rate, Science, 293, 5538, 2248-2251 (2001)
[14] Hayes, J. P.; Garland, T., The evolution of endothermy: testing the aerobic capacity model, Evolution, 49, 5, 836-847 (1995)
[15] Heinrich, B., Why have some animals evolved to regulate a high body temperature?, Amer. Nat., 111, 980, 623-640 (1977)
[16] Hochachka, P. W.; Somero, G. N., Adaptation of enzymes to metabolic functions, (Biochemical Adaptation (1984), Princeton University Press), 55-84
[17] Lawlor, D. W.; Tezara, W., Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes, Ann. Bot., 103, 4, 561-579 (2009)
[18] Leenson, I. A., Old rule of thumb and the arrhenius equation, J. Chem. Educ., 76, 10, 1459 (1999)
[19] Lopez-Urrutia, A.; Martin, E. San.; Harris, R. P.; Irigoien, X., Scaling the metabolic balance of the oceans, Proc. Natl. Acad. Sci. USA, 103, 23, 8739-8744 (2006)
[20] Lyman, C. P.; Willis, J. S.; Malan, A.; Wang, L. C.H., Hibernation and Torpor in Mammals and Birds (1982), Academic Press
[21] MacArthur, R. H., Species packing, and what interspecies competition minimizes, Proc. Natl. Acad. Sci. USA, 64, 4, 1369-1371 (1969)
[22] MacArthur, R. H., Species packing and competitive equilibrium for many species, Theor. Popul. Biol., 1, 1, 1-11 (1970)
[23] McNab, B. K., Food habits and the basal rate of metabolism in birds, Oecologia, 77, 3, 343-349 (1988)
[24] Morowitz, H. J.; Kostelnik, J. D.; Yang, J.; Cody, G. D., The origin of intermediary metabolism, Proc. Natl. Acad. Sci. USA, 97, 14, 7704-7708 (2000)
[25] Pörtner, H. O., Climate-dependent evolution of antarctic ectotherms: an integrative analysis, Deep Sea Res. II Top. Stud. Oceanogr., 53, 8-10, 1071-1104 (2006)
[26] Reiser, S.; Mues, A.; Herrmann, J.-P.; Eckhardt, A.; Hufnagl, M.; Temming, A., Salinity affects behavioral thermoregulation in a marine decapod crustacean, J. Sea Res., 128, 76-83 (2017)
[27] Rezende, E. L.; Bacigalupe, L. D., Thermoregulation in endotherms: physiological principles and ecological consequences, J. Comp. Physiol. B, 185, 7, 709-727 (2015)
[28] Savage, V. M.; Gillooly, J. F.; Brown, J. H.; West, G. B.; Charnov, E. L., Effects of body size and temperature on population growth, Am. Nat., 163, 3, 429-441 (2004)
[29] Scholander, P. F.; Hock, R.; Walters, V.; Johnson, F.; Irving, L., Heat regulation in some arctic and tropical mammals and birds, Biol. Bull., 99, 2, 237-258 (1950)
[30] Seebacher, F., Responses to temperature variation: integration of thermoregulation and metabolism in vertebrates, J. Exp. Biol., 212, 18, 2885-2891 (2009)
[31] Song, X.; Körtner, G.; Geiser, F., Reduction of metabolic rate and thermoregulation during daily torpor, J. Comp. Physiol. B, 165, 4, 291-297 (1995)
[32] Song, X.; Körtner, G.; Geiser, F., Thermal relations of metabolic rate reduction in a hibernating marsupial, Am. J. Physiol. Regul. Integr. Comp. Physiol., 273, 6, R2097-R2104 (1997)
[33] Storey, K. B.; Storey, J. M., Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation, Q. Rev. Biol., 65, 2, 145-174 (1990)
[34] Storey, K. B.; Storey, J. M., Natural freezing survival in animals, Annu. Rev. Ecol. Syst., 27, 1, 365-386 (1996)
[35] Szabó, P., Ideal free distribution of metabolic activity: implications of seasonal metabolic-activity patterns on competitive coexistence, Theor. Popul. Biol., 111, 1-8 (2016) · Zbl 1366.92112
[36] Tilman, D., Tests of resource competition theory using four species of Lake Michigan algae, Ecology, 62, 3, 802-815 (1981)
[37] Tilman, D., Resource Competition and Community Structure (1982), Princeton University Press
[38] Yodzis, P.; Innes, S., Body size and consumer-resource dynamics, Am. Nat., 139, 6, 1151-1175 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.