×

An accurate approximation for the expected site frequency spectrum in a Galton-Watson process under an infinite sites mutation model. (English) Zbl 1415.92196

Summary: If viruses or other pathogens infect a single host, the outcome of infection often hinges on the fate of the initial invaders. The initial basic reproduction number \(R_0\), the expected number of cells infected by a single infected cell, helps determine whether the initial viruses can establish a successful beachhead. To determine \(R_0\), the Kingman coalescent or continuous-time birth-and-death process can be used to infer the rate of exponential growth in an historical population. Given \(M\) sequences sampled in the present, the two models can make the inference from the site frequency spectrum (SFS), the count of mutations that appear in exactly \(k\) sequences (\(k = 1, 2, \dots, M\)). In the case of viruses, however, if \(R_0\) is large and an infected cell bursts while propagating virus, the two models are suspect, because they are Markovian with only binary branching. Accordingly, this article develops an approximation for the SFS of a discrete-time branching process with synchronous generations (i.e., a Galton-Watson process). When evaluated in simulations with an asynchronous, non-Markovian model (a Bellman-Harris process) with parameters intended to mimic the bursting viral reproduction of HIV, the approximation proved superior to approximations derived from the Kingman coalescent or continuous-time birth-and-death process. This article demonstrates that in analogy to methods in human genetics, the SFS of viral sequences sampled well after latent infection can remain informative about the initial \(R_0\). Thus, it suggests the utility of analyzing the SFS of sequences derived from patient and animal trials of viral therapies, because in some cases, the initial \(R_0\) may be able to indicate subtle therapeutic progress, even in the absence of statistically significant differences in the infection of treatment and control groups.

MSC:

92D30 Epidemiology
60J85 Applications of branching processes

Software:

SPMM

References:

[1] Arratia, R.; Goldstein, L.; Gordon, L., Poisson approximation and the Chen-Stein method, Statist. Sci., 5, 403-434 (1989) · Zbl 0955.62542
[2] Arratia, R.; Goldstein, L.; Gordon, L., Two moments suffice for Poisson approximations, the Chen-Stein method, Ann. Probab., 17, 9-25 (1989) · Zbl 0675.60017
[3] Athreya, K. B.; Ney, P. E., Branching Processes (2004), Dover: Dover Mineola, New York · Zbl 1070.60001
[4] Bellman, R.; Harris, T. E., On the theory of age-dependent stochastic branching processes, Proc. Natl. Acad. Sci. USA, 34, 601-604 (1948) · Zbl 0041.45604
[5] Champagnat, N.; Henry, B., Moments of the frequency spectrum of a splitting tree with neutral Poissonian mutations, Electron. J. Probab., 21 (2016) · Zbl 1348.60124
[6] Champagnat, N.; Lambert, A.; Richardson, M., Birth and death processes with neutral mutations, Int. J. Stoch. Anal. (2012) · Zbl 1261.92039
[7] Chen, H. Y.; Di Mascio, M.; Perelson, A. S., Determination of virus burst size in vivo using a single-cycle SIV in rhesus macaques, Proc. Natl. Acad. Sci. USA, 104, 19079-19084 (2007)
[8] De Boer, R. J.; Ribeiro, R. M.; Perelson, A. S., Current estimates for HIV-1 production imply rapid viral clearance in lymphoid tissues, Plos Comput. Biol., 6 (2010)
[9] Durrett, R., Probability Models for DNA Sequence Evolution (2008), Springer Science Business Media, LLC: Springer Science Business Media, LLC New York · Zbl 1311.92007
[10] Durrett, R., Population genetics of neutral mutations in exponentially growing cancer cell populations, Ann. Appl. Probab., 23, 230-250 (2013) · Zbl 1377.92061
[11] Durrett, R.; Limic, V., On the quantity and quality of single nucleotide polymorphisms in the human genome, Stochastic Process. Appl., 93, 1-24 (2001) · Zbl 1050.92021
[12] Eriksson, A.; Mehlig, B.; Rafajlovic, M., The total branch length of sample genealogies in populations of variable size, Genetics, 186, 601-611 (2010)
[13] Fiebig, E. W.; Wright, D. J.; Rawal, B. D., Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection, AIDS, 17, 1871-1879 (2003)
[14] Freedman, D., Remark on difference between sampling with and without replacement, J. Amer. Statist. Assoc., 72 (1977), 681-681
[15] Giorgi, E. E.; Funkhouser, B.; Athreya, G., Estimating time since infection in early homogeneous HIV-1 samples using a poisson model, BMC Bioinformatics, 11 (2010)
[16] Gordon, S. N.; Liyanage, N. P.M.; Doster, M. N., Boosting of ALVAC-SIV vaccine-primed macaques with the CD4-SIVgp120 fusion protein elicits antibodies to V2 associated with a decreased risk of SIVmac251 acquisition, J. Immunol., 197, 2726-2737 (2016)
[17] Griffiths, R. C.; Pakes, A. G., An infinite-alleles version of the simple branching-process, Adv. Appl. Probab., 20, 489-524 (1988) · Zbl 0653.92009
[18] Griffiths, R. C.; Tavare, S., The age of a mutation in a general coalescent tree, Stoch. Models, 273-295 (1998) · Zbl 0889.92017
[19] Haaland, R. E.; Hawkins, P. A.; Salazar-Gonzalez, J., Inflammatory genital infections mitigate a severe genetic bottleneck in heterosexual transmission of subtype A and C HIV-1, Plos Pathogens, 5 (2009)
[20] Hammersley, J. M.; Handscomb, D. C., Monte Carlo Methods (1964), Chapman and Hall: Chapman and Hall London · Zbl 0121.35503
[21] Harris, T. E., Branching processes, Ann. Math. Stat., 19, 474-494 (1948) · Zbl 0041.45603
[22] Harris, T. E., The Theory of Branching Processes (1963), Springer-Verlag: Springer-Verlag Berlin · Zbl 0117.13002
[23] Kahn, J. O.; Walker, B. D., Acute human immunodeficiency virus type 1 infection, New England J. Med., 339, 33-39 (1998)
[24] Keele, B. F.; Giorgi, E. E.; Salazar-Gonzalez, J. F., Identification and characterisation of transmitted and early founder virus envelopes in primary HIV-1 infection, Proc. Natl. Acad. Sci. USA, 105, 7552-7557 (2008)
[25] Kimura, M., Number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations, Genetics, 61, 893-903 (1969)
[26] Kimura, M.; Crow, J. F., Number of alleles that can be maintained in finite population, Genetics, 49, 725-738 (1964)
[27] Kosaka, P. M.; Pini, V.; Calleja, M., Ultrasensitive detection of HIV-1 p24 antigen by a hybrid nanomechanical-optoplasmonic platform with potential for detecting HIV-1 at first week after infection, Plos One, 12 (2017)
[28] Lee, H. Y.; Giorgi, E. E.; Keele, B. F., Modeling sequence evolution in acute HIV-1 infection, J. Theoret. Biol., 261, 341-360 (2009) · Zbl 1403.92296
[29] Love, T. M.T.; Park, S. Y.; Giorgi, E. E., SPMM: estimating infection duration of multivariant HIV-1 infections, Bioinformatics, 32, 1308-1315 (2016)
[30] Markowitz, M.; Louie, M.; Hurley, A., A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo, J. Virol., 77, 5037-5038 (2003)
[31] Nolen, T. L.; Hudgens, M. G.; Senb, P. K., Analysis of repeated low-dose challenge studies, Stat. Med., 34, 1981-1992 (2015)
[32] Ohtsuki, H.; Innan, H., Forward and backward evolutionary processes and allele frequency spectrum in a cancer cell population, Theoret. Popul. Biol., 117, 43-50 (2017) · Zbl 1393.92035
[33] Patel, P.; Borkowf, C. B.; Brooks, J. T., Estimating per-act HIV transmission risk: a systematic review, AIDS, 28, 1509-1519 (2014)
[34] Pegu, P.; Vaccari, M.; Gordon, S., Antibodies with high avidity to the gp120 envelope protein in protection from simian immunodeficiency virus sivmac251 acquisition in an immunization regimen that mimics the RV-144 thai trial, J. Virol., 87, 1708-1719 (2013)
[35] Regoes, R. R.; Longini, I. M.; Feinberg, M. B., Preclinical assessment of HIV vaccines and microbicides by repeated low-dose virus challenges, Plos Med., 2, 798-807 (2005)
[36] Ribeiro, R. M.; Qin, L.; Chavez, L. L., Estimation of the initial viral growth rate and basic reproductive number during acute HIV-1 infection, J. Virol., 84, 6096-6102 (2010)
[37] Schuh, H. J., A note on the Harris-Sevastyanov transformation for supercritical branching-processes, J. Aust. Math. Soc. Ser.- Pure Math. Stat., 32, 215-222 (1982) · Zbl 0502.60066
[38] Seo, T. K.; Thorne, J. L.; Hasegawa, M., Estimation of effective population size of HIV-1 within a host: A pseudomaximum-likelihood approach, Genetics, 160, 1283-1293 (2002)
[39] Stadler, T.; Vaughan, T. G.; Gavryushkin, A., How well can the exponential-growth coalescent approximate constant-rate birth-death population dynamics?, Proc. R. Soc. B [Biol. Sci.], 282 (2015)
[40] Stafford, M. A.; Corey, L.; Cao, Y. Z., Modeling plasma virus concentration during primary HIV infection, J. Theoret. Biol., 203, 285-301 (2000)
[41] Strbo, N.; Vaccari, M.; Pahwa, S., Cutting edge: Novel vaccination modality provides significant protection against mucosal infection by highly pathogenic simian immunodeficiency virus, J. Immunol., 190, 2495-2499 (2013)
[42] Ver Hoef, J. M., Who invented the delta method?, Amer. Statist., 66, 124-127 (2012) · Zbl 07649009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.