×

A bound on massive higher spin particles. (English) Zbl 1415.81067

Summary: According to common lore, massive elementary higher spin particles lead to inconsistencies when coupled to gravity. However, this scenario was not completely ruled out by previous arguments. In this paper, we show that in a theory where the low energy dynamics of the gravitons are governed by the Einstein-Hilbert action, any finite number of massive elementary particles with spin more than two cannot interact with gravitons, even classically, in a way that preserves causality. This is achieved in flat spacetime by studying eikonal scattering of higher spin particles in more than three spacetime dimensions. Our argument is insensitive to the physics above the effective cut-off scale and closes certain loopholes in previous arguments. Furthermore, it applies to higher spin particles even if they do not contribute to tree-level graviton scattering as a consequence of being charged under a global symmetry such as \(\mathbb{Z}_2\). We derive analogous bounds in anti-de Sitter space-time from analyticity properties of correlators of the dual CFT in the Regge limit. We also argue that an infinite tower of fine-tuned higher spin particles can still be consistent with causality. However, they necessarily affect the dynamics of gravitons at an energy scale comparable to the mass of the lightest higher spin particle. Finally, we apply the bound in de Sitter to impose restrictions on the structure of three-point functions in the squeezed limit of the scalar curvature perturbation produced during inflation.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
83C45 Quantization of the gravitational field

References:

[1] S. Weinberg, Photons and gravitons in s matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev.135 (1964) B1049 [INSPIRE]. · Zbl 0144.23702 · doi:10.1103/PhysRev.135.B1049
[2] S. Weinberg and E. Witten, Limits on massless particles, Phys. Lett.B 96 (1980) 59.
[3] M. Porrati, Universal limits on massless high-spin particles, Phys. Rev.D 78 (2008) 065016 [arXiv:0804.4672] [INSPIRE].
[4] N. Arkani-Hamed, T.-C. Huang and Y.-t. Huang, Scattering amplitudes for all masses and spins, arXiv:1709.04891 [INSPIRE]. · Zbl 1521.81418
[5] S. Weinberg, Lectures on elementary particles and quantum field theory, S. Deser ed., MIT Press, Cambridge U.S.A. (1970).
[6] S. Ferrara, M. Porrati and V.L. Telegdi, g = 2 as the natural value of the tree-level gyromagnetic ratio of elementary particles, Phys. Rev.D 46 (1992) 3529 [INSPIRE].
[7] M. Porrati, Massive spin 5/2 fields coupled to gravity: tree level unitarity versus the equivalence principle, Phys. Lett.B 304 (1993) 77 [gr-qc/9301012] [INSPIRE].
[8] A. Cucchieri, M. Porrati and S. Deser, Tree level unitarity constraints on the gravitational couplings of higher spin massive fields, Phys. Rev.D 51 (1995) 4543 [hep-th/9408073] [INSPIRE].
[9] X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP02 (2016) 020 [arXiv:1407.5597] [INSPIRE]. · Zbl 1388.83093 · doi:10.1007/JHEP02(2016)020
[10] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP08 (2016) 106 [arXiv:1503.01409] [INSPIRE]. · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
[11] M.A. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch. Phys.52 (2004) 702 [hep-th/0401177] [INSPIRE]. · Zbl 1052.81071 · doi:10.1002/prop.200410167
[12] X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, in Higher spin gauge theories: Proceedings, 1st Solvay Workshop: Brussels, Belgium, 12-14 May, 2004, pp. 132-197, 2004, hep-th/0503128 [INSPIRE].
[13] M.T. Grisaru and H.N. Pendleton, Soft spin 3/2 fermions require gravity and supersymmetry, Phys. Lett.B 67 (1977) 323.
[14] M.T. Grisaru, H.N. Pendleton and P. van Nieuwenhuizen, Supergravity and the S matrix, Phys. Rev.D 15 (1977) 996 [INSPIRE].
[15] F. Loebbert, The Weinberg-Witten theorem on massless particles: An Essay, Annalen Phys.17 (2008) 803 [INSPIRE]. · Zbl 1152.81027 · doi:10.1002/andp.200810305
[16] C. Aragone and S. Deser, Consistency problems of hypergravity, Phys. Lett.B 86 (1979) 161.
[17] F.A. Berends, J.W. van Holten, P. van Nieuwenhuizen and B. de Wit, On spin 5/2 gauge fields, Phys. Lett.B 83 (1979) 188 [Erratum ibid.B 84 (1979) 529].
[18] C. Aragone and H. La Roche, Massless second order tetradic spin 3 fields and higher helicity bosons, Nuovo Cim.A 72 (1982) 149 [INSPIRE].
[19] R.R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys.B 759 (2006) 147 [hep-th/0512342] [INSPIRE]. · Zbl 1116.81042
[20] N. Boulanger and S. Leclercq, Consistent couplings between spin-2 and spin-3 massless fields, JHEP11 (2006) 034 [hep-th/0609221] [INSPIRE]. · doi:10.1088/1126-6708/2006/11/034
[21] N. Boulanger, S. Leclercq and P. Sundell, On The Uniqueness of Minimal Coupling in Higher-Spin Gauge Theory, JHEP08 (2008) 056 [arXiv:0805.2764] [INSPIRE]. · doi:10.1088/1126-6708/2008/08/056
[22] A. Adams et al., Causality, analyticity and an IR obstruction to UV completion, JHEP10 (2006) 014 [hep-th/0602178] [INSPIRE]. · doi:10.1088/1126-6708/2006/10/014
[23] I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP10 (2009) 079 [arXiv:0907.0151] [INSPIRE]. · doi:10.1088/1126-6708/2009/10/079
[24] L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in AdS/CFT: from shock waves to four-point functions, JHEP08 (2007) 019 [hep-th/0611122] [INSPIRE]. · Zbl 1326.81147 · doi:10.1088/1126-6708/2007/08/019
[25] L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in AdS/CFT: conformal partial waves and finite N four-point functions, Nucl. Phys.B 767 (2007) 327 [hep-th/0611123] [INSPIRE]. · Zbl 1326.81147
[26] L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: Resumming the gravitational loop expansion, JHEP09 (2007) 037 [arXiv:0707.0120] [INSPIRE]. · doi:10.1088/1126-6708/2007/09/037
[27] G. Mack, D-dimensional conformal field theories with anomalous dimensions as dual resonance models, Bulg. J. Phys.36 (2009) 214 [arXiv:0909.1024] [INSPIRE]. · Zbl 1202.81190
[28] G. Mack, D-independent representation of conformal field theories in D dimensions via transformation to auxiliary dual resonance models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].
[29] A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective conformal theory and the flat-space limit of AdS, JHEP07 (2011) 023 [arXiv:1007.2412] [INSPIRE]. · Zbl 1298.81212 · doi:10.1007/JHEP07(2011)023
[30] I. Heemskerk and J. Sully, More holography from conformal field theory, JHEP09 (2010) 099 [arXiv:1006.0976] [INSPIRE]. · Zbl 1291.81351 · doi:10.1007/JHEP09(2010)099
[31] A.L. Fitzpatrick and J. Kaplan, Analyticity and the holographic S-matrix, JHEP10 (2012) 127 [arXiv:1111.6972] [INSPIRE]. · Zbl 1397.81300 · doi:10.1007/JHEP10(2012)127
[32] A.L. Fitzpatrick et al., A natural language for AdS/CFT correlators, JHEP11 (2011) 095 [arXiv:1107.1499] [INSPIRE]. · Zbl 1306.81225 · doi:10.1007/JHEP11(2011)095
[33] S. El-Showk and K. Papadodimas, Emergent spacetime and holographic CFTs, JHEP10 (2012) 106 [arXiv:1101.4163] [INSPIRE]. · doi:10.1007/JHEP10(2012)106
[34] Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE]. · doi:10.1007/JHEP11(2013)140
[35] A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE]. · Zbl 1342.83239 · doi:10.1007/JHEP12(2013)004
[36] A.L. Fitzpatrick and J. Kaplan, AdS field theory from conformal field theory, JHEP02 (2013) 054 [arXiv:1208.0337] [INSPIRE]. · Zbl 1342.81487 · doi:10.1007/JHEP02(2013)054
[37] V. Goncalves, J. Penedones and E. Trevisani, Factorization of Mellin amplitudes, JHEP10 (2015) 040 [arXiv:1410.4185] [INSPIRE]. · Zbl 1388.81982 · doi:10.1007/JHEP10(2015)040
[38] E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten diagrams revisited: the AdS geometry of conformal blocks, JHEP01 (2016) 146 [arXiv:1508.00501] [INSPIRE]. · Zbl 1388.81047 · doi:10.1007/JHEP01(2016)146
[39] L.F. Alday and A. Bissi, Unitarity and positivity constraints for CFT at large central charge, JHEP07 (2017) 044 [arXiv:1606.09593] [INSPIRE]. · Zbl 1380.81281 · doi:10.1007/JHEP07(2017)044
[40] L.F. Alday, A. Bissi and T. Lukowski, Lessons from crossing symmetry at large N , JHEP06 (2015) 074 [arXiv:1410.4717] [INSPIRE]. · Zbl 1387.81041 · doi:10.1007/JHEP06(2015)074
[41] S. Caron-Huot, Analyticity in spin in conformal theories, JHEP09 (2017) 078 [arXiv:1703.00278] [INSPIRE]. · Zbl 1382.81173 · doi:10.1007/JHEP09(2017)078
[42] N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Einstein gravity 3-point functions from conformal field theory, JHEP12 (2017) 049 [arXiv:1610.09378] [INSPIRE]. · Zbl 1383.83024 · doi:10.1007/JHEP12(2017)049
[43] M. Kulaxizi, A. Parnachev and A. Zhiboedov, Bulk Phase Shift, CFT Regge Limit and Einstein Gravity, JHEP06 (2018) 121 [arXiv:1705.02934] [INSPIRE]. · Zbl 1395.83012 · doi:10.1007/JHEP06(2018)121
[44] M.S. Costa, T. Hansen and J. Penedones, Bounds for OPE coefficients on the Regge trajectory, JHEP10 (2017) 197 [arXiv:1707.07689] [INSPIRE]. · Zbl 1383.81197 · doi:10.1007/JHEP10(2017)197
[45] N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Shockwaves from the operator product expansion, arXiv:1709.03597 [INSPIRE]. · Zbl 1383.83024
[46] D. Meltzer and E. Perlmutter, Beyond a = c: gravitational couplings to matter and the stress tensor OPE, JHEP07 (2018) 157 [arXiv:1712.04861] [INSPIRE]. · Zbl 1395.83092
[47] N. Afkhami-Jeddi, S. Kundu and A. Tajdini, A conformal collider for holographic CFTs, JHEP10 (2018) 156 [arXiv:1805.07393] [INSPIRE]. · Zbl 1402.83037 · doi:10.1007/JHEP10(2018)156
[48] J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys.A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE]. · Zbl 1339.81089
[49] N. Boulanger, D. Ponomarev, E.D. Skvortsov and M. Taronna, On the uniqueness of higher-spin symmetries in AdS and CFT, Int. J. Mod. Phys.A 28 (2013) 1350162 [arXiv:1305.5180] [INSPIRE]. · Zbl 1284.81250
[50] T. Hartman, S. Jain and S. Kundu, Causality constraints in conformal field theory, JHEP05 (2016) 099 [arXiv:1509.00014] [INSPIRE]. · doi:10.1007/JHEP05(2016)099
[51] V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in d<3 dimensions, JHEP03 (2016) 044 [arXiv:1510.02535] [INSPIRE].
[52] N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
[53] C. Cordova, J. Maldacena and G.J. Turiaci, Bounds on OPE coefficients from interference effects in the conformal collider, JHEP11 (2017) 032 [arXiv:1710.03199] [INSPIRE]. · Zbl 1383.81196 · doi:10.1007/JHEP11(2017)032
[54] K. Hinterbichler, A. Joyce and R.A. Rosen, Eikonal scattering and asymptotic superluminality of massless higher spin fields, Phys. Rev.D 97 (2018) 125019 [arXiv:1712.10021] [INSPIRE]. · Zbl 1388.83590
[55] J. Bonifacio, K. Hinterbichler, A. Joyce and R.A. Rosen, Massive and massless spin-2 scattering and asymptotic superluminality, JHEP06 (2018) 075 [arXiv:1712.10020] [INSPIRE]. · Zbl 1395.83083 · doi:10.1007/JHEP06(2018)075
[56] M. Levy and J. Sucher, Eikonal approximation in quantum field theory, Phys. Rev.186 (1969) 1656 [INSPIRE]. · doi:10.1103/PhysRev.186.1656
[57] X.O. Camanho, G. Lucena Gómez and R. Rahman, Causality constraints on massive gravity, Phys. Rev.D 96 (2017) 084007 [arXiv:1610.02033] [INSPIRE].
[58] J.D. Edelstein et al., Causality in 3D massive gravity theories, Phys. Rev.D 95 (2017) 104016 [arXiv:1602.03376] [INSPIRE].
[59] G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett.B 198 (1987) 61 [INSPIRE].
[60] I.I. Shapiro, Fourth test of general relativity, Phys. Rev. Lett.13 (1964) 789 [INSPIRE]. · doi:10.1103/PhysRevLett.13.789
[61] S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav.17 (2000) 4999 [gr-qc/0007021] [INSPIRE]. · Zbl 0972.83015
[62] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, JHEP11 (2011) 071 [arXiv:1107.3554] [INSPIRE]. · Zbl 1306.81207 · doi:10.1007/JHEP11(2011)071
[63] G. Tiktopoulos and S.B. Treiman, Relativistic eikonal approximation, Phys. Rev.D 3 (1971) 1037 [INSPIRE]. · Zbl 1227.83005
[64] H. Cheng and T.T. Wu, Expanding protons: scattering at high-energies, MIT Press, Cambridge U.S.A. (1987).
[65] D.N. Kabat, Validity of the Eikonal approximation, Comments Nucl. Part. Phys.20 (1992) 325 [hep-th/9204103] [INSPIRE].
[66] L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev.D 9 (1974) 898 [INSPIRE].
[67] L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 2. The fermion case, Phys. Rev.D 9 (1974) 910 [INSPIRE].
[68] Yu. M. Zinoviev, On massive high spin particles in AdS, hep-th/0108192 [INSPIRE]. · Zbl 1192.81238
[69] R. Rahman, Interacting massive higher spin fields, AAT-3365735, PROQUEST-1826271451 (2009).
[70] J. Bonifacio and K. Hinterbichler, Universal bound on the strong coupling scale of a gravitationally coupled massive spin-2 particle, Phys. Rev.D 98 (2018) 085006 [arXiv:1806.10607] [INSPIRE].
[71] M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP12 (2012) 091 [arXiv:1209.4355] [INSPIRE]. · Zbl 1397.81297 · doi:10.1007/JHEP12(2012)091
[72] P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP11 (2018) 102 [arXiv:1805.00098] [INSPIRE]. · Zbl 1404.81234 · doi:10.1007/JHEP11(2018)102
[73] S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for conformal algebra. Vacuum expectation values and operator products, Lett. Nuovo Cim.4S2 (1972) 115 [INSPIRE].
[74] D. Simmons-Duffin, Projectors, shadows and conformal blocks, JHEP04 (2014) 146 [arXiv:1204.3894] [INSPIRE]. · Zbl 1333.83125 · doi:10.1007/JHEP04(2014)146
[75] F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.B 599 (2001) 459 [hep-th/0011040] [INSPIRE]. · Zbl 1097.81734
[76] B. Czech et al., A stereoscopic look into the bulk, JHEP07 (2016) 129 [arXiv:1604.03110] [INSPIRE]. · Zbl 1390.83101 · doi:10.1007/JHEP07(2016)129
[77] J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP08 (2016) 162 [arXiv:1606.03307] [INSPIRE]. · Zbl 1390.83135 · doi:10.1007/JHEP08(2016)162
[78] R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and gauge/string duality, JHEP12 (2007) 005 [hep-th/0603115] [INSPIRE]. · Zbl 1246.81224 · doi:10.1088/1126-6708/2007/12/005
[79] T. Hartman, S. Jain and S. Kundu, A new spin on causality constraints, JHEP10 (2016) 141 [arXiv:1601.07904] [INSPIRE]. · Zbl 1390.83114 · doi:10.1007/JHEP10(2016)141
[80] D.M. Hofman et al., A proof of the conformal collider bounds, JHEP06 (2016) 111 [arXiv:1603.03771] [INSPIRE]. · Zbl 1388.81048 · doi:10.1007/JHEP06(2016)111
[81] T. Hartman, S. Kundu and A. Tajdini, Averaged null energy condition from causality, JHEP07 (2017) 066 [arXiv:1610.05308] [INSPIRE]. · Zbl 1380.81327 · doi:10.1007/JHEP07(2017)066
[82] D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP05 (2008) 012 [arXiv:0803.1467] [INSPIRE]. · doi:10.1088/1126-6708/2008/05/012
[83] T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for deformed half-spaces and the averaged null energy condition, JHEP09 (2016) 038 [arXiv:1605.08072] [INSPIRE]. · Zbl 1390.83106 · doi:10.1007/JHEP09(2016)038
[84] D. Amati, M. Ciafaloni and G. Veneziano, Effective action and all order gravitational eikonal at Planckian energies, Nucl. Phys.B 403 (1993) 707 [INSPIRE].
[85] D. Amati, M. Ciafaloni and G. Veneziano, Planckian scattering beyond the semiclassical approximation, Phys. Lett.B 289 (1992) 87 [INSPIRE].
[86] D. Amati, M. Ciafaloni and G. Veneziano, Can space-time be probed below the string size?, Phys. Lett.B 216 (1989) 41 [INSPIRE].
[87] D. Amati, M. Ciafaloni and G. Veneziano, Classical and quantum gravity effects from planckian energy superstring collisions, Int. J. Mod. Phys.A 3 (1988) 1615 [INSPIRE].
[88] D. Amati, M. Ciafaloni and G. Veneziano, Superstring collisions at planckian energies, Phys. Lett.B 197 (1987) 81 [INSPIRE].
[89] M. Taronna, Higher spins and string interactions, arXiv:1005.3061 [INSPIRE]. · Zbl 1348.81384
[90] A. Sagnotti and M. Taronna, String lessons for higher-spin interactions, Nucl. Phys.B 842 (2011) 299 [arXiv:1006.5242] [INSPIRE]. · Zbl 1207.81135
[91] G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, Regge behavior saves String Theory from causality violations, JHEP05 (2015) 144 [arXiv:1502.01254] [INSPIRE]. · Zbl 1388.83065 · doi:10.1007/JHEP05(2015)144
[92] A. Higuchi, Forbidden mass range for spin-2 field theory in de Sitter space-time, Nucl. Phys.B 282 (1987) 397 [INSPIRE].
[93] S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys.B 607 (2001) 577 [hep-th/0103198] [INSPIRE]. · Zbl 0969.81601
[94] D. Baumann, Primordial cosmology, PoS(TASI2017)009 [arXiv:1807.03098] [INSPIRE]. · Zbl 1490.83001
[95] H. Lee, D. Baumann and G.L. Pimentel, Non-gaussianity as a particle detector, JHEP12 (2016) 040 [arXiv:1607.03735] [INSPIRE]. · Zbl 1390.83465 · doi:10.1007/JHEP12(2016)040
[96] K.N. Abazajian et al., Neutrino physics from the Cosmic Microwave Background and large scale structure, Astropart. Phys.63 (2015) 66 [arXiv:1309.5383] [INSPIRE]. · doi:10.1016/j.astropartphys.2014.05.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.